Skip to content
1887

Abstract

Several hundred ciliate species live in animals’ guts as a part of their microbiome. Among them, (Trichostomatia, Pycnotrichidae), the largest described ciliate, is found exclusively associated with (capybara), the largest known rodent reaching up to 90 kg. Here, we present the sequence, structural and functional annotation of this giant microeukaryote macronuclear genome and discuss its phylogenetic placement. The 85 Mb genome is highly AT rich (GC content 25.71 %) and encodes a total of 11 397 protein-coding genes, of which 2793 could have their functions predicted with automated functional assignments. Functional annotation showed that can digest recalcitrant structural carbohydrates, non-structural carbohydrates, and microbial cell walls, suggesting a role in diet metabolization and in microbial population control in the capybara’s intestine. Moreover, the phylogenetic placement of provides insights on the origins of gigantism in the subclass Trichostomatia.

Funding
This study was supported by the:
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (Award 2019/17077-2)
    • Principle Award Recipient: MarcusVinicius Xavier Senra
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (Award 2022/00538-0)
    • Principle Award Recipient: MillkeJasmine Arminini Morales
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (Award 2020/10682-5)
    • Principle Award Recipient: FrancianeCedrola
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (Award 2020/11027-0)
    • Principle Award Recipient: VeraNisaka Solferini
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001263
2024-07-02
2025-06-21
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/7/mgen001263.html?itemId=/content/journal/mgen/10.1099/mgen.0.001263&mimeType=html&fmt=ahah

References

  1. Ahsan R, Blanche W, Katz LA. Macronuclear development in ciliates, with a focus on nuclear architecture. J Eukaryot Microbiol 2022; 69:12898 [View Article] [PubMed]
    [Google Scholar]
  2. Gruby D, Delafond O. Recherches sur des animacules se développant em grand nombre dans l’estomac et dans l’intestin, pendant la digestion des animaux herbivores et carnivores. C R Acad Sci Hebd Seances Acad Sci 1843; 17:1304–1308
    [Google Scholar]
  3. Fonseca E. Protozoários parasitas. 1. Ciliado gigante, Muniziella cunhai, gen. n., sp. n., parasita de Hydrochoerus capybara (Holotricha. Pycnothrichidae). Mem Inst Butantan 1939; 12:165–172
    [Google Scholar]
  4. Moreira JR, Ferraz K, Herrera EA, Macdonald DW. eds Capybara: Biology, Use and Conservation of an Exceptional Neotropical Species Springer; 2013
    [Google Scholar]
  5. Cabral L, Persinoti GF, Paixão DAA, Martins MP, Morais MAB et al. Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides. Nat Commun 2022; 13:629 [View Article] [PubMed]
    [Google Scholar]
  6. Ito A, Imai S. Ciliates from the cecum of Capybara (Hydrochoerus hydrochaeris) in Bolivia 1. The families Hydrochoerellidae n. fam., Protohallidae, and Pycnotrichidae. Eur J Protistol 2000a; 36:53–84 [View Article]
    [Google Scholar]
  7. Ito A, Imai S. Ciliates from the cecum of Capybara (Hydrochoerus hydrochaeris) in Bolivia 2. The family Cycloposthiidae. Eur J Protistol 2000b; 36:169–200 [View Article]
    [Google Scholar]
  8. Cedrola F, Fregulia P, D’Agosto M, Dias RJP. Intestinal ciliates of Brazilian Capybara (Hydrochoerus hydrochaeris L.). AP 2018; 57:61–67 [View Article]
    [Google Scholar]
  9. Fregulia P, Cedrola F, Dias RJP, D’agosto M. Checklist of Cycloposthiidae species (Ciliophora, Entodiniomorphida), with a brief review on taxonomy, morphology and hosts. Zootaxa 2020; 4821:88–104 [View Article]
    [Google Scholar]
  10. Poche F. Das system der protozoa. Archiv Protistenk 1913; 30:125–321
    [Google Scholar]
  11. Corliss JO. The Ciliated Protozoa: Characterization, Classification and Guide to the Literature, 2nd edn London: Pergamon Press; 1979
    [Google Scholar]
  12. Lynn DH. The Ciliated Protozoa: Characterization, Classification and Guide to the Literature, 3rd edn Heidelberg: Springer; 2008
    [Google Scholar]
  13. Foissner W, Al-Rasheid KAS, Strüder-Kypke MC, Lynn DH. Morphological and molecular phylogeny of the polycytopharyngeal ciliate Pycnothrix monocystoides Schubotz, 1908. Aquat Ecosyst Health Manag 2020; 23:79–92 [View Article]
    [Google Scholar]
  14. Cedrola F, Senra MVX, Faulhaber FR, D’Agosto M, Dias RJP. Disentangling the family Blepharocorythidae (Ciliophora, Entodiniomorphida): a molecular assessment of morphological classification. Syst Biodiver 2021; 19:426–437 [View Article]
    [Google Scholar]
  15. Kornilova OA, Ganyukova AI, Belokon ME, Platonov VV, Chistyakova LV. Ciliates from the faeces of the free-ranging dromedary from Oman: morphology and molecular phylogeny. Protist 2023; 174:125993 [View Article]
    [Google Scholar]
  16. Mackie RI. Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integr Comparat Biol 2002; 42:319–326 [View Article]
    [Google Scholar]
  17. Feng J-M, Jiang C-Q, Sun Z-Y, Hua C-J, Wen J-F et al. Single-cell transcriptome sequencing of rumen ciliates provides insight into their molecular adaptations to the anaerobic and carbohydrate-rich rumen microenvironment. Mol Phylogenet Evol 2020; 143:106687 [View Article]
    [Google Scholar]
  18. Fregulia P, Cedrola F, Senra MVX, D’Agosto M, Dias RJP. New finds on the systematics of Cycloposthiid ciliates (Ciliophora: Entodiniomorphida: Cycloposthiidae) based on new 18S-rDNA sequences from a Brazilian Capybara. Curr Microbiol 2021; 78:3872–3876 [View Article]
    [Google Scholar]
  19. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  20. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  21. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  22. Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol 2018; 35:543–548 [View Article] [PubMed]
    [Google Scholar]
  23. Kriventseva EV, Kuznetsov D, Tegenfeldt F, Manni M, Dias R et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucl Acids Res 2019; 47:D807–D811 [View Article] [PubMed]
    [Google Scholar]
  24. Maurer-Alcalá XX, Yan Y, Pilling OA, Knight R, Katz LA. Twisted tales: insights into genome diversity of ciliates using single-cell omics. Genome Biol Evol 2018; 10:1927–1938 [View Article] [PubMed]
    [Google Scholar]
  25. Park T, Wijeratne S, Meulia T, Firkins JL, Yu Z. The macronuclear genome of anaerobic ciliate Entodinium caudatum reveals its biological features adapted to the distinct rumen environment. Genomics 2021; 113:1416–1427 [View Article]
    [Google Scholar]
  26. Li Z, Wang X, Zhang Y, Yu Z, Zhang T et al. Genomic insights into the phylogeny and biomass-degrading enzymes of rumen ciliates. ISME J 2022; 16:2775–2787 [View Article] [PubMed]
    [Google Scholar]
  27. Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite. Nucleic Acids Res 2015; 43:W39–W49 [View Article] [PubMed]
    [Google Scholar]
  28. Dutilh BE, Jurgelenaite R, Szklarczyk R, van Hijum SAFT, Harhangi HR et al. FACIL: fast and accurate genetic code inference and logo. Bioinformatics 2011; 27:1929–1933 [View Article] [PubMed]
    [Google Scholar]
  29. Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 2013; 29:2933–2935 [View Article] [PubMed]
    [Google Scholar]
  30. Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucl Acids Res 2004; 32:11–16 [View Article] [PubMed]
    [Google Scholar]
  31. Brůna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genom Bioinform 2021; 3:Iqaa108 [View Article] [PubMed]
    [Google Scholar]
  32. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 2021; 38:5825–5829 [View Article] [PubMed]
    [Google Scholar]
  33. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucl Acids Res 2019; 47:D309–D314 [View Article] [PubMed]
    [Google Scholar]
  34. Zheng J, Ge Q, Yan Y, Zhang X, Huang L et al. dbCAN3: automated carbohydrate-active enzyme and substrate annotation. Nucl Acids Res 2023; 51:W115–W121 [View Article] [PubMed]
    [Google Scholar]
  35. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article] [PubMed]
    [Google Scholar]
  36. Emms DM, Kelly S. STRIDE: species tree root inference from gene duplication events. Mol Biol Evol 2017; 34:3267–3278 [View Article] [PubMed]
    [Google Scholar]
  37. Emms DM, Kelly S. STAG: species tree inference from all genes. Evolut Biol [View Article]
    [Google Scholar]
  38. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article] [PubMed]
    [Google Scholar]
  39. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 2012; 9:772 [View Article] [PubMed]
    [Google Scholar]
  40. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003; 52:696–704 [View Article]
    [Google Scholar]
  41. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61:539–542 [View Article] [PubMed]
    [Google Scholar]
  42. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  43. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  44. Batisse A. Quelques infusoires holotriches parasites du coecum de l’hydrocheire (Hydrocheirus capybara L.). Protist 1966; 2:39–52
    [Google Scholar]
  45. McLure MT. The cecal ciliates of the Venezuelan capybara (Hydrochoerus hydrochaeris and H. isthmius). Trans Am Microsc Soc 1976; 95:268
    [Google Scholar]
  46. Shoshani J. Order Hyracoidea. In Wilson DE, Reeder DM. eds Mammal Species of the World: A Taxonomic and Geographic Reference, 3th edn. Baltimore: Johns Hopkins University Press; p 2005
    [Google Scholar]
  47. Poux C, Chevret P, Huchon D, de Jong WW, Douzery EJP. Arrival and diversification of caviomorph rodents and platyrrhine primates in South America. Syst Biol 2006; 55:228–244 [View Article]
    [Google Scholar]
  48. Riley JL, Katz LA. Widespread distribution of extensive chromosomal fragmentation in ciliates. Mol Biol Evol 2001; 18:1372–1377 [View Article]
    [Google Scholar]
  49. Jin D, Li C, Chen X, Byerly A, Stover NA et al. Comparative genome analysis of three euplotid protists provides insights into the evolution of nanochromosomes in unicellular eukaryotic organisms. Mar Life Sci Technol 2023; 5:300–315 [View Article] [PubMed]
    [Google Scholar]
  50. Vďačný P. Evolutionary associations of endosymbiotic ciliates shed light on the timing of the Marsupial–Placental split. Mol Biol Evol 2018; 35:1757–1769 [View Article] [PubMed]
    [Google Scholar]
  51. Williams CL, Thomas BJ, McEwan NR, Rees Stevens P, Creevey CJ et al. Rumen protozoa play a significant role in fungal predation and plant carbohydrate breakdown. Front Microbiol 2020; 11: [View Article] [PubMed]
    [Google Scholar]
  52. Firkins JL, Yu Z, Park T, Plank JE. Extending Burk Dehority’s perspectives on the role of ciliate protozoa in the Rumen. Front Microbiol 2020; 11:123 [View Article] [PubMed]
    [Google Scholar]
  53. Millen DD, Arrigoni M de B, Pacheco RDL. eds Rumenology Springer; 2016 [View Article]
    [Google Scholar]
  54. Andersen TO, Altshuler I, Vera-Ponce de León A, Walter JM, McGovern E et al. Metabolic influence of core ciliates within the rumen microbiome. ISME J 2023; 17:1128–1140 [View Article] [PubMed]
    [Google Scholar]
  55. Zhang D, Jian Y-P, Zhang Y-N, Li Y, Gu L-T et al. Short-chain fatty acids in diseases. Cell Commun Signal 2023; 21:212 [View Article] [PubMed]
    [Google Scholar]
  56. Borges PA, Dominguez-Bello MG, Herrera EA. Digestive physiology of wild capybara. J Comp Physiol B 1996; 166: [View Article]
    [Google Scholar]
  57. Kiani A, Clauss M, Ortmann S, Vendl C, Congdon ER et al. Digestive physiology of captive capybara (Hydrochoerus hydrochaeris). Zoo Biology 2019; 38:167–179 [View Article]
    [Google Scholar]
  58. Nogueira-Filho SLG, Carvalho MAG de, Mendes A, Nogueira SS da C. Protein, calcium and phosphorus requirements in the maintenance of captive-bred capybaras. R Bras Zootec 2013; 42:334–341 [View Article]
    [Google Scholar]
  59. Gao F, Warren A, Zhang Q, Gong J, Miao M et al. The all-data-based evolutionary hypothesis of ciliated Protists with a revised classification of the Phylum Ciliophora (Eukarya, Alveolata). Sci Rep 2016; 6:24874
    [Google Scholar]
  60. Gentekaki E, Kolisko M, Boscaro V, Bright KJ, Dini F et al. Large-scale phylogenomic analysis reveals the phylogenetic position of the problematic taxon Protocruzia and unravels the deep phylogenetic affinities of the ciliate lineages. Mol Phylogenet Evol 2014; 78:36–42 [View Article]
    [Google Scholar]
  61. Gentekaki E, Kolisko M, Gong Y, Lynn D. Phylogenomics solves a long-standing evolutionary puzzle in the ciliate world: the subclass Peritrichia is monophyletic. Mol Phylogenet Evol 2017; 106:1–5 [View Article]
    [Google Scholar]
  62. Lynn DH, Kolisko M, Bourland W. Phylogenomic analysis of Nassula variabilis n. sp., Furgasonia blochmanni, and Pseudomicrothorax dubius confirms a Nassophorean clade. Protist 2018; 169:180–189 [View Article]
    [Google Scholar]
  63. Li J, Li S, Su H, Yu M, Xu J et al. Comprehensive phylogenomic analyses reveal that order Armophorida is most closely related to class Armophorea (Protista, Ciliophora). Mol Phylogenet Evol 2023; 182:107737 [View Article]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001263
Loading
/content/journal/mgen/10.1099/mgen.0.001263
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Supplementary material 3

MOVIE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error