1887

Abstract

Endofungal (formerly ) spp. rely on a type III secretion system to deliver mostly unidentified effector proteins when colonizing their host fungus, . The one known secreted effector family from consists of homologues of transcription activator-like (TAL) effectors, which are used by plant pathogenic and spp. to activate host genes that promote disease. These ‘ TAL-like (Btl)’ proteins bind corresponding specific DNA sequences in a predictable manner, but their genomic target(s) and impact on transcription in the fungus are unknown. Recent phenotyping of Btl mutants of two strains revealed that the single Btl in one strain enhances fungal membrane stress tolerance, while others in a strain promote bacterial colonization of the fungus. The phenotypic diversity underscores the need to assess the sequence diversity and, given that sequence diversity translates to DNA targeting specificity, the functional diversity of Btl proteins. Using a dual approach to maximize capture of Btl protein sequences for our analysis, we sequenced and assembled nine spp. genomes using long-read PacBio technology and also mined available short-read Illumina fungal–bacterial metagenomes. We show that genes are present across diverse strains from Mucoromycota fungal hosts yet vary in sequences and predicted DNA binding specificity. Phylogenetic analysis revealed distinct clades of Btl proteins and suggested that might contain more species than previously recognized. Within our data set, Btl proteins were more conserved across strains than across , but there was also evidence of greater overall strain diversity within the latter clade. Overall, the results suggest that Btl proteins contribute to bacterial–fungal symbioses in myriad ways.

Funding
This study was supported by the:
  • National Science Foundation (Award 2030338)
    • Principle Award Recipient: JessieK. Uehling
  • National Science Foundation (Award 2202410)
    • Principle Award Recipient: JessieK. Uehling
  • National Institute of Food and Agriculture (Award CA-R-PPA-211-5062-H)
    • Principle Award Recipient: JasonE. Stajich
  • National Science Foundation (Award EF-2125066)
    • Principle Award Recipient: JasonE. Stajich
  • Division of Environmental Biology (Award DEB-1441715)
    • Principle Award Recipient: JasonE. Stajich
  • Agricultural Research Service (Award 8062-22410-007-000D)
    • Principle Award Recipient: BrianLovett
  • National Institute of Food and Agriculture (Award 2021-67034-40327)
    • Principle Award Recipient: MorganElizabeth Carter
  • National Institute of Food and Agriculture (Award 2018-67011-28015)
    • Principle Award Recipient: MorganElizabeth Carter
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001261
2024-06-11
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/6/mgen001261.html?itemId=/content/journal/mgen/10.1099/mgen.0.001261&mimeType=html&fmt=ahah

References

  1. Perez-Quintero AL, Szurek B. A decade decoded: spies and hackers in the history of TAL effectors research. Annu Rev Phytopathol 2019; 57:459–481 [View Article] [PubMed]
    [Google Scholar]
  2. Hutin M, Pérez-Quintero AL, Lopez C, Szurek B. MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility. Front Plant Sci 2015; 6:535 [View Article] [PubMed]
    [Google Scholar]
  3. Bonas U, Stall RE, Staskawicz B. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet 1989; 218:127–136 [View Article] [PubMed]
    [Google Scholar]
  4. Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science 2009; 326:1501 [View Article] [PubMed]
    [Google Scholar]
  5. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 2009; 326:1509–1512 [View Article] [PubMed]
    [Google Scholar]
  6. de Lange O, Wolf C, Thiel P, Krüger J, Kleusch C et al. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats. Nucleic Acids Res 2015; 43:10065–10080 [View Article] [PubMed]
    [Google Scholar]
  7. de Lange O, Wolf C, Dietze J, Elsaesser J, Morbitzer R et al. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain. Nucleic Acids Res 2014; 42:7436–7449 [View Article] [PubMed]
    [Google Scholar]
  8. Carter ME, Carpenter SCD, Dubrow ZE, Sabol MR, Rinaldi FC et al. A TAL effector-like protein of an endofungal bacterium increases the stress tolerance and alters the transcriptome of the host. Proc Natl Acad Sci U S A 2020; 117:17122–17129 [View Article] [PubMed]
    [Google Scholar]
  9. Juillerat A, Bertonati C, Dubois G, Guyot V, Thomas S et al. BurrH: a new modular DNA binding protein for genome engineering. Sci Rep 2014; 4:3831 [View Article] [PubMed]
    [Google Scholar]
  10. Estrada-de Los Santos P, Palmer M, Chávez-Ramírez B, Beukes C, Steenkamp ET et al. Whole genome analyses suggests that Burkholderia sensu lato contains two additional novel genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): implications for the evolution of diazotrophy and nodulation in the Burkholderiaceae. Genes 2018; 9:389 [View Article] [PubMed]
    [Google Scholar]
  11. Partida-Martinez LP, Hertweck C. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 2005; 437:884–888 [View Article] [PubMed]
    [Google Scholar]
  12. Scherlach K, Partida-Martinez LP, Dahse HM, Hertweck C. Antimitotic rhizoxin derivatives from a cultured bacterial endosymbiont of the rice pathogenic fungus Rhizopus microsporus. J Am Chem Soc 2006; 128:11529–11536 [View Article] [PubMed]
    [Google Scholar]
  13. Partida-Martinez LP, Hertweck C. A gene cluster encoding rhizoxin biosynthesis in “Burkholderia rhizoxina”, the bacterial endosymbiont of the fungus Rhizopus microsporus. Chembiochem 2007; 8:41–45 [View Article] [PubMed]
    [Google Scholar]
  14. Mondo SJ, Lastovetsky OA, Gaspar ML, Schwardt NH, Barber CC et al. Bacterial endosymbionts influence host sexuality and reveal reproductive genes of early divergent fungi. Nat Commun 2017; 8:1843 [View Article] [PubMed]
    [Google Scholar]
  15. Lackner G, Moebius N, Hertweck C. Endofungal bacterium controls its host by an hrp type III secretion system. ISME J 2011; 5:252–261 [View Article] [PubMed]
    [Google Scholar]
  16. Partida-Martinez LP, Groth I, Schmitt I, Richter W, Roth M et al. Burkholderia rhizoxinica sp. nov. and Burkholderia endofungorum sp. nov., bacterial endosymbionts of the plant-pathogenic fungus Rhizopus microsporus. Int J Syst Evol Microbiol 2007; 57:2583–2590 [View Article] [PubMed]
    [Google Scholar]
  17. Lastovetsky OA, Gaspar ML, Mondo SJ, LaButti KM, Sandor L et al. Lipid metabolic changes in an early divergent fungus govern the establishment of a mutualistic symbiosis with endobacteria. Proc Natl Acad Sci U S A 2016; 113:15102–15107 [View Article] [PubMed]
    [Google Scholar]
  18. Gryganskyi AP, Golan J, Muszewska A, Idnurm A, Dolatabadi S et al. Sequencing the genomes of the first terrestrial fungal lineages: what have we learned?. Microorganisms 2023; 11:1830 [View Article] [PubMed]
    [Google Scholar]
  19. Dolatabadi S, Scherlach K, Figge M, Hertweck C, Dijksterhuis J et al. Food preparation with mucoralean fungi: a potential biosafety issue?. Fungal Biol 2016; 120:393–401 [View Article] [PubMed]
    [Google Scholar]
  20. Ibrahim AS, Gebremariam T, Liu M, Chamilos G, Kontoyiannis D et al. Bacterial endosymbiosis is widely present among zygomycetes but does not contribute to the pathogenesis of mucormycosis. J Infect Dis 2008; 198:1083–1090 [View Article] [PubMed]
    [Google Scholar]
  21. Lackner G, Möbius N, Scherlach K, Partida-Martinez LP, Winkler R et al. Global distribution and evolution of a toxinogenic Burkholderia-Rhizopus symbiosis. Appl Environ Microbiol 2009; 75:2982–2986 [View Article] [PubMed]
    [Google Scholar]
  22. Richter I, Wein P, Uzum Z, Stanley CE, Krabbe J et al. Transcription activator-like effector protects bacterial endosymbionts from entrapment within fungal hyphae. Curr Biol 2023; 33:2646–2656 [View Article] [PubMed]
    [Google Scholar]
  23. Richter I, Uzum Z, Wein P, Molloy EM, Moebius N et al. Transcription activator-like effectors from endosymbiotic bacteria control the reproduction of their fungal host. mBio 2023; 14:e0182423 [View Article] [PubMed]
    [Google Scholar]
  24. Lastovetsky OA, Krasnovsky LD, Qin X, Gaspar ML, Gryganskyi AP et al. Molecular dialogues between early divergent fungi and bacteria in an antagonism versus a mutualism. mBio 2020; 11:e02088-20 [View Article] [PubMed]
    [Google Scholar]
  25. Lackner G, Moebius N, Partida-Martinez L, Hertweck C. Complete genome sequence of Burkholderia rhizoxinica, an Endosymbiont of Rhizopus microsporus. J Bacteriol 2011; 193:783–784 [View Article] [PubMed]
    [Google Scholar]
  26. Vandepol N, Liber J, Desirò A, Na H, Kennedy M et al. Resolving the Mortierellaceae phylogeny through synthesis of multi-gene phylogenetics and phylogenomics. Fungal Divers 2020; 104:267–289 [View Article] [PubMed]
    [Google Scholar]
  27. Reynolds NK, Stajich JE, Benny GL, Barry K, Mondo S et al. Mycoparasites, gut dwellers, and saprotrophs: phylogenomic reconstructions and comparative analyses of Kickxellomycotina fungi. Genome Biol Evol 2023; 15:evac185 [View Article] [PubMed]
    [Google Scholar]
  28. Wang Y, Chang Y, Ortañez J, Peña JF, Carter-House D et al. Divergent evolution of early terrestrial fungi reveals the evolution of Mucormycosis pathogenicity factors. Genome Biol Evol 2023; 15:evad046 [View Article] [PubMed]
    [Google Scholar]
  29. Booher NJ, Carpenter SCD, Sebra RP, Wang L, Salzberg SL et al. Single molecule real-time sequencing of Xanthomonas oryzae genomes reveals a dynamic structure and complex TAL (transcription activator-like) effector gene relationships. Microb Genom 2015; 1:e000032 [View Article] [PubMed]
    [Google Scholar]
  30. Manni M, Berkeley MR, Seppey M, Zdobnov EM. BUSCO: assessing genomic data quality and beyond. Curr Protoc 2021; 1:e323 [View Article] [PubMed]
    [Google Scholar]
  31. Cumsille A, Durán RE, Rodríguez-Delherbe A, Saona-Urmeneta V, Cámara B et al. GenoVi, an open-source automated circular genome visualizer for bacteria and archaea. PLOS Comput Biol 2023; 19:e1010998 [View Article] [PubMed]
    [Google Scholar]
  32. Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol Biol Evol 2014; 31:1077–1088 [View Article] [PubMed]
    [Google Scholar]
  33. Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol 2021; 6:3–6 [View Article] [PubMed]
    [Google Scholar]
  34. Delmont TO, Eren AM. Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ 2018; 6:e4320 [View Article] [PubMed]
    [Google Scholar]
  35. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  36. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  37. Lee MD. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 2019; 35:4162–4164 [View Article] [PubMed]
    [Google Scholar]
  38. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016; 4:e1900v1901 [View Article]
    [Google Scholar]
  39. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  40. Miller IJ, Rees ER, Ross J, Miller I, Baxa J et al. Autometa: automated extraction of microbial genomes from individual shotgun metagenomes. Nucleic Acids Res 2019; 47:e57 [View Article] [PubMed]
    [Google Scholar]
  41. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2019; 36:1925–1927 [View Article] [PubMed]
    [Google Scholar]
  42. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  43. Lipscomb L, Schell MA. Elucidation of the regulon and cis-acting regulatory element of HrpB, the AraC-type regulator of a plant pathogen-like type III secretion system in Burkholderia pseudomallei. J Bacteriol 2011; 193:1991–2001 [View Article] [PubMed]
    [Google Scholar]
  44. Cunnac S, Boucher C, Genin S. Characterization of the cis-acting regulatory element controlling HrpB-mediated activation of the type III secretion system and effector genes in Ralstonia solanacearum. J Bacteriol 2004; 186:2309–2318 [View Article] [PubMed]
    [Google Scholar]
  45. Eichinger V, Nussbaumer T, Platzer A, Jehl M-A, Arnold R et al. EffectiveDB--updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems. Nucleic Acids Res 2016; 44:D669–D674 [View Article] [PubMed]
    [Google Scholar]
  46. Pérez-Quintero AL, Lamy L, Gordon JL, Escalon A, Cunnac S et al. QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically. Front Plant Sci 2015; 6:545 [View Article] [PubMed]
    [Google Scholar]
  47. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  48. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res 2004; 14:1188–1190 [View Article] [PubMed]
    [Google Scholar]
  49. Schandry N, de Lange O, Prior P, Lahaye T. TALE-like effectors are an ancestral feature of the Ralstonia solanacearum species complex and converge in DNA targeting specificity. Front Plant Sci 2016; 7:1225 [View Article] [PubMed]
    [Google Scholar]
  50. Meygret A, Peuchant O, Dordet-Frisoni E, Sirand-Pugnet P, Citti C et al. High prevalence of integrative and conjugative elements encoding transcription activator-like effector repeats in Mycoplasma hominis. Front Microbiol 2019; 10:2385 [View Article] [PubMed]
    [Google Scholar]
  51. Niehs SP, Scherlach K, Dose B, Uzum Z, Stinear TP et al. A highly conserved gene locus in endofungal bacteria codes for the biosynthesis of symbiosis-specific cyclopeptides. PNAS Nexus 2022; 1:pgac152 [View Article] [PubMed]
    [Google Scholar]
  52. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  53. Palmer M, Steenkamp ET, Blom J, Hedlund BP, Venter SN. All ANIs are not created equal: implications for prokaryotic species boundaries and integration of ANIs into polyphasic taxonomy. Int J Syst Evol Microbiol 2020; 70:2937–2948 [View Article] [PubMed]
    [Google Scholar]
  54. Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 2016; 108:1028–1046 [View Article] [PubMed]
    [Google Scholar]
  55. Chang Y, Wang Y, Mondo S, Ahrendt S, Andreopoulos W et al. Evolution of zygomycete secretomes and the origins of terrestrial fungal ecologies. iScience 2022; 25:104840 [View Article] [PubMed]
    [Google Scholar]
  56. Davis WJ, Amses KR, Benny GL, Carter-House D, Chang Y et al. Genome-scale phylogenetics reveals a monophyletic Zoopagales (Zoopagomycota, Fungi). Mol Phylogenet Evol 2019; 133:152–163 [View Article] [PubMed]
    [Google Scholar]
  57. Chang Y, Desirò A, Na H, Sandor L, Lipzen A et al. Phylogenomics of endogonaceae and evolution of mycorrhizas within Mucoromycota. New Phytol 2019; 222:511–525 [View Article] [PubMed]
    [Google Scholar]
  58. Amses K, Desiró A, Bryson A, Grigoriev I, Mondo S et al. Convergent reductive evolution and host adaptation in Mycoavidus bacterial endosymbionts of Mortierellaceae fungi. Fungal Genet Biol 2023; 169:103838 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001261
Loading
/content/journal/mgen/10.1099/mgen.0.001261
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error