Skip to content
1887

Abstract

is a leading cause of infections in immunocompromised individuals and in healthcare settings. This study aims to understand the relationships between phenotypic diversity and the functional metabolic landscape of clinical isolates. To better understand the metabolic repertoire of in infection, we deeply profiled a representative set from a library of 971 clinical isolates with corresponding patient metadata and bacterial phenotypes. The genotypic clustering based on whole-genome sequencing of the isolates, multilocus sequence types, and the phenotypic clustering generated from a multi-parametric analysis were compared to each other to assess the genotype–phenotype correlation. Genome-scale metabolic network reconstructions were developed for each isolate through amendments to an existing PA14 network reconstruction. These network reconstructions show diverse metabolic functionalities and enhance the collective pangenome metabolic repertoire. Characterizing this rich set of clinical isolates allows for a deeper understanding of the genotypic and metabolic diversity of the pathogen in a clinical setting and lays a foundation for further investigation of the metabolic landscape of this pathogen and host-associated metabolic differences during infection.

Funding
This study was supported by the:
  • Foundation for the National Institutes of Health (Award R01-AI154242)
    • Principle Award Recipient: JasonA Papin
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001259
2024-06-05
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/6/mgen001259.html?itemId=/content/journal/mgen/10.1099/mgen.0.001259&mimeType=html&fmt=ahah

References

  1. Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 2017; 7:39 [View Article] [PubMed]
    [Google Scholar]
  2. Obritsch MD, Fish DN, MacLaren R, Jung R. Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: epidemiology and treatment options. Pharmacotherapy 2005; 25:1353–1364 [View Article] [PubMed]
    [Google Scholar]
  3. Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol Rev 2002; 15:194–222 [View Article] [PubMed]
    [Google Scholar]
  4. Gellatly SL, Hancock REW. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 2013; 67:159–173 [View Article] [PubMed]
    [Google Scholar]
  5. Yelin I, Snitser O, Novich G, Katz R, Tal O et al. Personal clinical history predicts antibiotic resistance of urinary tract infections. Nat Med 2019; 25:1143–1152 [View Article] [PubMed]
    [Google Scholar]
  6. Serra R, Grande R, Butrico L, Rossi A, Settimio UF et al. Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev Anti Infect Ther 2015; 13:605–613 [View Article] [PubMed]
    [Google Scholar]
  7. Kang C-I, Kim S-H, Kim H-B, Park S-W, Choe Y-J et al. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis 2003; 37:745–751 [View Article] [PubMed]
    [Google Scholar]
  8. Goldberg JB. Pseudomonas: global bacteria. Trends Microbiol 2000; 8:55–57 [View Article] [PubMed]
    [Google Scholar]
  9. Poulsen BE, Yang R, Clatworthy AE, White T, Osmulski SJ et al. Defining the core essential genome of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 2019; 116:10072–10080 [View Article] [PubMed]
    [Google Scholar]
  10. Dunphy LJ, Kolling GL, Jenior ML, Carroll J, Attai AE et al. Multidimensional clinical surveillance of Pseudomonas aeruginosa reveals complex relationships between isolate source, morphology, and antimicrobial resistance. mSphere 2021; 6:e0039321 [View Article] [PubMed]
    [Google Scholar]
  11. Farrell DJ, Morrissey I, De Rubeis D, Robbins M, Felmingham D. A UK multicentre study of the antimicrobial susceptibility of bacterial pathogens causing urinary tract infection. J Infect 2003; 46:94–100 [View Article] [PubMed]
    [Google Scholar]
  12. Ford MB, Mende K, Kaiser SJ, Beckius ML, Lu D et al. Clinical characteristics and resistance patterns of Pseudomonas aeruginosa isolated from combat casualties. Mil Med 2022; 187:426–434 [View Article] [PubMed]
    [Google Scholar]
  13. Freschi L, Vincent AT, Jeukens J, Emond-Rheault J-G, Kukavica-Ibrulj I et al. The Pseudomonas aeruginosa pan-genome provides new insights on its population structure, horizontal gene transfer, and pathogenicity. Genome Biol Evol 2019; 11:109–120 [View Article] [PubMed]
    [Google Scholar]
  14. Stanton RA, Campbell D, McAllister GA, Breaker E, Adamczyk M et al. Whole-genome sequencing reveals diversity of carbapenem-resistant Pseudomonas aeruginosa collected through CDC’s emerging infections program, United States, 2016-2018. Antimicrob Agents Chemother 2022; 66:e0049622 [View Article] [PubMed]
    [Google Scholar]
  15. Obritsch MD, Fish DN, MacLaren R, Jung R. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob Agents Chemother 2004; 48:4606–4610 [View Article] [PubMed]
    [Google Scholar]
  16. Morrissey I, Hackel M, Badal R, Bouchillon S, Hawser S et al. A review of ten years of the study for monitoring antimicrobial resistance trends (SMART) from 2002 to 2011. Pharmaceuticals 2013; 6:1335–1346 [View Article] [PubMed]
    [Google Scholar]
  17. Lebreton F, Snesrud E, Hall L, Mills E, Galac M et al. A panel of diverse Pseudomonas aeruginosa clinical isolates for research and development. JAC Antimicrob Resist 2021; 3:dlab179 [View Article] [PubMed]
    [Google Scholar]
  18. Fischer S, Dethlefsen S, Klockgether J, Tümmler B. Phenotypic and genomic comparison of the two most common ExoU-positive Pseudomonas aeruginosa clones, PA14 and ST235. mSystems 2020; 5:e01007-20 [View Article] [PubMed]
    [Google Scholar]
  19. Ozer EA, Allen JP, Hauser AR. Characterization of the core and accessory genomes of Pseudomonas aeruginosa using bioinformatic tools Spine and AGEnt. BMC Genom 2014; 15:737 [View Article] [PubMed]
    [Google Scholar]
  20. Kung VL, Ozer EA, Hauser AR. The accessory genome of Pseudomonas aeruginosa. Microbiol Mol Biol Rev 2010; 74:621–641 [View Article] [PubMed]
    [Google Scholar]
  21. Subedi D, Kohli GS, Vijay AK, Willcox M, Rice SA. Accessory genome of the multi-drug resistant ocular isolate of Pseudomonas aeruginosa PA34. PLoS One 2019; 14:e0215038 [View Article] [PubMed]
    [Google Scholar]
  22. Darch SE, McNally A, Harrison F, Corander J, Barr HL et al. Recombination is a key driver of genomic and phenotypic diversity in a Pseudomonas aeruginosa population during cystic fibrosis infection. Sci Rep 2015; 5:7649 [View Article] [PubMed]
    [Google Scholar]
  23. Azimi S, Roberts AEL, Peng S, Weitz JS, McNally A et al. Allelic polymorphism shapes community function in evolving Pseudomonas aeruginosa populations. ISME J 2020; 14:1929–1942 [View Article] [PubMed]
    [Google Scholar]
  24. Bosi E, Monk JM, Aziz RK, Fondi M, Nizet V et al. Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity. Proc Natl Acad Sci USA 2016; 113:E3801–E3809 [View Article] [PubMed]
    [Google Scholar]
  25. Hansen EE, Lozupone CA, Rey FE, Wu M, Guruge JL et al. Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins. Proc Natl Acad Sci USA 2011; 108:4599–4606 [View Article] [PubMed]
    [Google Scholar]
  26. Elfil M, Negida A. Sampling methods in clinical research; an educational review. Emergency 2017; 5:e52 [PubMed]
    [Google Scholar]
  27. Vitharana UWA, Mishra U, Jastrow JD, Matamala R, Fan Z. Observational needs for estimating Alaskan soil carbon stocks under current and future climate. JGR Biogeosci 2017; 122:415–429 [View Article]
    [Google Scholar]
  28. Zerbino DR. Using the velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinform 2010; 31:11.5 [View Article] [PubMed]
    [Google Scholar]
  29. Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG et al. ACT: the artemis comparison tool. Bioinformatics 2005; 21:3422–3423 [View Article] [PubMed]
    [Google Scholar]
  30. Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004; 14:1394–1403 [View Article] [PubMed]
    [Google Scholar]
  31. Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genom 2011; 12:402 [View Article] [PubMed]
    [Google Scholar]
  32. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  33. Stecher G, Tamura K, Kumar S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol Biol Evol 2020; 37:1237–1239 [View Article] [PubMed]
    [Google Scholar]
  34. Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res 2022; 50:W276–W279 [View Article] [PubMed]
    [Google Scholar]
  35. Hall BG. Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 2013; 30:1229–1235 [View Article] [PubMed]
    [Google Scholar]
  36. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 1999; 27:29–34 [View Article] [PubMed]
    [Google Scholar]
  37. Corter JE, Gluck MA. Explaining basic categories: feature predictability and information. Psychol Bull 1992; 111:291–303 [View Article]
    [Google Scholar]
  38. Curran B, Jonas D, Grundmann H, Pitt T, Dowson CG. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J Clin Microbiol 2004; 42:5644–5649 [View Article] [PubMed]
    [Google Scholar]
  39. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [View Article] [PubMed]
    [Google Scholar]
  40. Ribeiro-Gonçalves B, Francisco AP, Vaz C, Ramirez M, Carriço JA. PHYLOViZ online: web-based tool for visualization, phylogenetic inference, analysis and sharing of minimum spanning trees. Nucleic Acids Res 2016; 44:W246–W251 [View Article] [PubMed]
    [Google Scholar]
  41. Galili T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 2015; 31:3718–3720 [View Article] [PubMed]
    [Google Scholar]
  42. Hefner R, Torgerson WS. Theory and methods of scaling. In Behavioral Science vol 4 New York: Wiley; 1958 p 460 [View Article]
    [Google Scholar]
  43. Bray JR, Curtis JT. An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr 1957; 27:325–349 [View Article]
    [Google Scholar]
  44. Kanehisa M, Goto SK. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000; 28:27–30 [View Article] [PubMed]
    [Google Scholar]
  45. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  46. Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods 2021; 18:366–368 [View Article] [PubMed]
    [Google Scholar]
  47. Payne DD, Renz A, Dunphy LJ, Lewis T, Dräger A et al. An updated genome-scale metabolic network reconstruction of Pseudomonas aeruginosa PA14 to characterize mucin-driven shifts in bacterial metabolism. NPJ Syst Biol Appl 2021; 7:37 [View Article] [PubMed]
    [Google Scholar]
  48. Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 2010; 28:977–982 [View Article] [PubMed]
    [Google Scholar]
  49. Megchelenbrink W, Huynen M, Marchiori E. optGpSampler: an improved tool for uniformly sampling the solution-space of genome-scale metabolic networks. PLoS One 2014; 9:e86587 [View Article] [PubMed]
    [Google Scholar]
  50. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR. COBRApy: constraints-based reconstruction and analysis for python. BMC Syst Biol 2013; 7:74 [View Article] [PubMed]
    [Google Scholar]
  51. Jaccard P. The distribution of the flora in the Alpine zone. New Phytol 1912; 11:37–50 [View Article]
    [Google Scholar]
  52. Fieller EC, Hartley HO, Pearson ES. Tests for rank correlation coefficients. I. Biometrika 1957; 44:470–481 [View Article]
    [Google Scholar]
  53. David NA, Burgner PR. Clinical effectiveness and safety of novobiocin. Antibiotic Med Clin Ther 1956; 2:219–229
    [Google Scholar]
  54. Burlison JA, Neckers L, Smith AB, Maxwell A, Blagg BSJ. Novobiocin: redesigning a DNA gyrase inhibitor for selective inhibition of hsp90. J Am Chem Soc 2006; 128:15529–15536 [View Article] [PubMed]
    [Google Scholar]
  55. Srikumar R, Kon T, Gotoh N, Poole K. Expression of Pseudomonas aeruginosa multidrug efflux pumps MexA-MexB-OprM and MexC-MexD-OprJ in a multidrug-sensitive Escherichia coli strain. Antimicrob Agents Chemother 1998; 42:65–71 [View Article] [PubMed]
    [Google Scholar]
  56. Chen W, Wang D, Zhou W, Sang H, Liu X et al. Novobiocin binding to NalD induces the expression of the MexAB-OprM pump in Pseudomonas aeruginosa. Mol Microbiol 2016; 100:749–758 [View Article] [PubMed]
    [Google Scholar]
  57. Goldová J, Ulrych A, Hercík K, Branny P. A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence. BMC Genom 2011; 12:437 [View Article] [PubMed]
    [Google Scholar]
  58. Glasser NR, Kern SE, Newman DK. Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force. Mol Microbiol 2014; 92:399–412 [View Article] [PubMed]
    [Google Scholar]
  59. de Sousa T, Hébraud M, Dapkevicius MLNE, Maltez L, Pereira JE et al. Genomic and metabolic characteristics of the pathogenicity in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:12892 [View Article] [PubMed]
    [Google Scholar]
  60. Higgins S, Heeb S, Rampioni G, Fletcher MP, Williams P et al. Differential regulation of the phenazine biosynthetic operons by quorum sensing in Pseudomonas aeruginosa PAO1-N. Front Cell Infect Microbiol 2018; 8:252 [View Article] [PubMed]
    [Google Scholar]
  61. Schiessl KT, Hu F, Jo J, Nazia SZ, Wang B et al. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat Commun 2019; 10:762 [View Article] [PubMed]
    [Google Scholar]
  62. Sudek S, Lopanik NB, Waggoner LE, Hildebrand M, Anderson C et al. Identification of the putative bryostatin polyketide synthase gene cluster from “Candidatus Endobugula sertula”, the uncultivated microbial symbiont of the marine bryozoan Bugula neritina. J Nat Prod 2007; 70:67–74 [View Article] [PubMed]
    [Google Scholar]
  63. Tauchen J, Huml L, Rimpelova S, Jurášek M. Flavonoids and related members of the aromatic polyketide group in human health and disease: do they really work?. Molecules 2020; 25:3846 [View Article] [PubMed]
    [Google Scholar]
  64. Partida-Martinez LP, Hertweck C. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 2005; 437:884–888 [View Article] [PubMed]
    [Google Scholar]
  65. Adusumilli S, Mve-Obiang A, Sparer T, Meyers W, Hayman J et al. Mycobacterium ulcerans toxic macrolide, mycolactone modulates the host immune response and cellular location of M. ulcerans in vitro and in vivo. Cell Microbiol 2005; 7:1295–1304 [View Article] [PubMed]
    [Google Scholar]
  66. Ridley CP, Lee HY, Khosla C. Evolution of polyketide synthases in bacteria. Proc Natl Acad Sci USA 2008; 105:4595–4600 [View Article] [PubMed]
    [Google Scholar]
  67. Summers RM, Mohanty SK, Gopishetty S, Subramanian M. Genetic characterization of caffeine degradation by bacteria and its potential applications. Microb Biotechnol 2015; 8:369–378 [View Article] [PubMed]
    [Google Scholar]
  68. Norizan SNM, Yin W-F, Chan K-G. Caffeine as a potential quorum sensing inhibitor. Sensors 2013; 13:5117–5129 [View Article] [PubMed]
    [Google Scholar]
  69. Chakraborty P, Dastidar DG, Paul P, Dutta S, Basu D et al. Inhibition of biofilm formation of Pseudomonas aeruginosa by caffeine: a potential approach for sustainable management of biofilm. Arch Microbiol 2020; 202:623–635 [View Article] [PubMed]
    [Google Scholar]
  70. Vega FE, Emche S, Shao J, Simpkins A, Summers RM et al. Cultivation and genome sequencing of bacteria isolated from the coffee Berry Borer (Hypothenemus hampei), with emphasis on the role of caffeine degradation. Front Microbiol 2021; 12:644768 [View Article] [PubMed]
    [Google Scholar]
  71. Oberhardt MA, Palsson , Papin JA. Applications of genome-scale metabolic reconstructions. Mol Syst Biol 2009; 5:320 [View Article] [PubMed]
    [Google Scholar]
  72. Ruppin E, Papin JA, de Figueiredo LF, Schuster S. Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks. Curr Opin Biotechnol 2010; 21:502–510 [View Article] [PubMed]
    [Google Scholar]
  73. Price ND, Papin JA, Schilling CH, Palsson BO. Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol 2003; 21:162–169 [View Article] [PubMed]
    [Google Scholar]
  74. La Rosa R, Johansen HK, Molin S. Adapting to the airways: metabolic requirements of Pseudomonas aeruginosa during the infection of cystic fibrosis patients. Metabolites 2019; 9:234 [View Article] [PubMed]
    [Google Scholar]
  75. Camus L, Vandenesch F, Moreau K. From genotype to phenotype: adaptations of Pseudomonas aeruginosa to the cystic fibrosis environment. Microb Genom 2021; 7:mgen000513 [View Article] [PubMed]
    [Google Scholar]
  76. Faure E, Kwong K, Nguyen D. Pseudomonas aeruginosa in chronic lung infections: how to adapt within the host?. Front Immunol 2018; 9:2416 [View Article] [PubMed]
    [Google Scholar]
  77. Winstanley C, O’Brien S, Brockhurst MA. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol 2016; 24:327–337 [View Article] [PubMed]
    [Google Scholar]
  78. Chandler CE, Horspool AM, Hill PJ, Wozniak DJ, Schertzer JW et al. Genomic and phenotypic diversity among ten laboratory isolates of Pseudomonas aeruginosa PAO1. J Bacteriol 2019; 201:e00595-18 [View Article] [PubMed]
    [Google Scholar]
  79. Ozer EA, Nnah E, Didelot X, Whitaker RJ, Hauser AR. The population structure of Pseudomonas aeruginosa is characterized by genetic isolation of exoU+ and exoS+ lineages. Genome Biol Evol 2019; 11:1780–1796 [View Article] [PubMed]
    [Google Scholar]
  80. Orth JD, Thiele I, Palsson . What is flux balance analysis?. Nat Biotechnol 2010; 28:245–248 [View Article] [PubMed]
    [Google Scholar]
  81. Islam MM, Saha R. Computational approaches on stoichiometric and kinetic modeling for efficient strain design. Methods Mol Biol 2018; 1671:63–82 [View Article] [PubMed]
    [Google Scholar]
  82. Oberhardt MA, Chavali AK, Papin JA. Flux balance analysis: interrogating genome-scale metabolic networks. Methods Mol Biol 2009; 500:61–80 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001259
Loading
/content/journal/mgen/10.1099/mgen.0.001259
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error