Skip to content
1887

Abstract

Carbapenems are last-resort antibiotics for treatment of infections caused by multidrug-resistant , but carbapenem resistance is a rising global threat due to the acquisition of carbapenemase genes. Oxacillinase-48 ( )-type carbapenemases are increasing in abundance in Canada and elsewhere; these genes are frequently found on mobile genetic elements and are associated with specific transposons. This means that alongside clonal dissemination, genes can spread through plasmid-mediated horizontal gene transfer. We applied whole genome sequencing to characterize 249 -producing isolates collected by the Canadian Nosocomial Infection Surveillance Program from 2010 to 2021. Using a combination of short- and long-read sequencing, we obtained 70 complete and circular -encoding plasmids. Using MOB-suite, four major plasmids clustered were identified, and we further estimated a plasmid cluster for 91.9 % (147/160) of incomplete -encoding contigs. We identified different patterns of carbapenemase mobilization across Canada, including horizontal transmission of /IncX3 plasmids (75/249, 30.1 %) and /IncL/M plasmids (47/249, 18.9 %), and both horizontal transmission and clonal transmission of for ST231 on ColE2-type/ColKP3 plasmids (25/249, 10.0 %). Our findings highlight the diversity of OXA-48-type plasmids and indicate that multiple plasmid clusters and clonal transmission have contributed to spread and persistence in Canada.

Funding
This study was supported by the:
  • Public Health Agency of Canada
    • Principle Award Recipient: NotApplicable
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001257
2024-06-19
2025-06-24
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/6/mgen001257.html?itemId=/content/journal/mgen/10.1099/mgen.0.001257&mimeType=html&fmt=ahah

References

  1. Sheu C-C, Chang Y-T, Lin S-Y, Chen Y-H, Hsueh P-R. Infections caused by Carbapenem-resistant Enterobacteriaceae: an update on therapeutic options. Front Microbiol 2019; 10:80 [View Article] [PubMed]
    [Google Scholar]
  2. Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 2007; 20:440–458 [View Article] [PubMed]
    [Google Scholar]
  3. Karlowsky JA, Lob SH, Kazmierczak KM, Badal RE, Young K et al. In vitro activity of imipenem against Carbapenemase-positive Enterobacteriaceae isolates collected by the SMART global surveillance program from 2008 to 2014. J Clin Microbiol 2017; 55:1638–1649 [View Article] [PubMed]
    [Google Scholar]
  4. Kopotsa K, Osei Sekyere J, Mbelle NM. Plasmid evolution in carbapenemase-producing Enterobacteriaceae: a review. Ann N Y Acad Sci 2019; 1457:61–91 [View Article] [PubMed]
    [Google Scholar]
  5. Boyd SE, Holmes A, Peck R, Livermore DM, Hope W. OXA-48-like β-Lactamases: global epidemiology, treatment options, and development pipeline. Antimicrob Agents Chemother 2022; 66:e0021622 [View Article] [PubMed]
    [Google Scholar]
  6. Logan LK, Weinstein RA. The epidemiology of Carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis 2017; 215:S28–S36 [View Article] [PubMed]
    [Google Scholar]
  7. Canadian Nosocomial infection surveillance program Healthcare-associated infections and antimicrobial resistance in Canadian acute care hospitals, 2016–2020. Can Commun Dis Rep 2022; 48:7 [View Article]
    [Google Scholar]
  8. Pitout JDD, Peirano G, Kock MM, Strydom K-A, Matsumura Y. The global ascendency of OXA-48-type carbapenemases. Clin Microbiol Rev 2019; 33:e00102-19 [View Article] [PubMed]
    [Google Scholar]
  9. Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother 2012; 67:1597–1606 [View Article] [PubMed]
    [Google Scholar]
  10. Mataseje LF, Boyd DA, Hoang L, Imperial M, Lefebvre B et al. Carbapenem-hydrolyzing oxacillinase-48 and oxacillinase-181 in Canada, 2011. Emerg Infect Dis 2013; 19:157–160 [View Article] [PubMed]
    [Google Scholar]
  11. Lázaro-Perona F, Dahdouh E, Sotillo A, Pérez-Blanco V, Villa J et al. Dissemination of a single ST11 clone of OXA-48-producing Klebsiella pneumoniae within a large polyclonal hospital outbreak determined by genomic sequencing. Microb Genom 2022; 8:000808 [View Article] [PubMed]
    [Google Scholar]
  12. Turton JF, Doumith M, Hopkins KL, Perry C, Meunier D et al. Clonal expansion of Escherichia coli ST38 carrying a chromosomally integrated OXA-48 carbapenemase gene. J Med Microbiol 2016; 65:538–546 [View Article] [PubMed]
    [Google Scholar]
  13. Mataseje LF, Abdesselam K, Vachon J, Mitchel R, Bryce E et al. Results from the Canadian nosocomial infection surveillance program on carbapenemase-producing Enterobacteriaceae, 2010 to 2014. Antimicrob Agents Chemother 2016; 60:6787–6794 [View Article] [PubMed]
    [Google Scholar]
  14. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 2018; 31:e00088-17 [View Article] [PubMed]
    [Google Scholar]
  15. Hendrickx APA, Landman F, de Haan A, Witteveen S, van Santen-Verheuvel MG et al. bla OXA-48-like genome architecture among carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in the Netherlands. Microb Genom 2021; 7:000512 [View Article]
    [Google Scholar]
  16. Honda NH, Aoki K, Kamisasanuki T, Matsuda N, To M et al. Isolation of three distinct carbapenemase-producing Gram-negative bacteria from a Vietnamese medical tourist. J Infect Chemother 2019; 25:811–815 [View Article] [PubMed]
    [Google Scholar]
  17. Carattoli A, Seiffert SN, Schwendener S, Perreten V, Endimiani A. Differentiation of IncL and IncM plasmids associated with the spread of clinically relevant antimicrobial resistance. PLoS One 2015; 10:e0123063 [View Article] [PubMed]
    [Google Scholar]
  18. Shankar C, Mathur P, Venkatesan M, Pragasam AK, Anandan S et al. Rapidly disseminating blaOXA-232 carrying Klebsiella pneumoniae belonging to ST231 in India: multiple and varied mobile genetic elements. BMC Microbiol 2019; 19:137 [View Article] [PubMed]
    [Google Scholar]
  19. Aubert D, Naas T, Héritier C, Poirel L, Nordmann P. Functional characterization of IS1999, an IS4 family element involved in mobilization and expression of beta-lactam resistance genes. J Bacteriol 2006; 188:6506–6514 [View Article] [PubMed]
    [Google Scholar]
  20. Liu Y, Feng Y, Wu W, Xie Y, Wang X et al. First report of OXA-181-producing Escherichia coli in China and characterization of the isolate using whole-genome sequencing. Antimicrob Agents Chemother 2015; 59:5022–5025 [View Article] [PubMed]
    [Google Scholar]
  21. Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing: Informational Supplement M100 ED33:2023 Wayne, PA, USA: Clinical and Laboratory Standards Institute; 2023
    [Google Scholar]
  22. Canadian Nosocomial Infection Surveillance Program Surveillance Protocol for Carbapenemase-Producing Organisms (CPO) in CNISP Hospitals Public Health Agency of Canada; 2023
    [Google Scholar]
  23. van Domselaar G. RefSeq Masher. National Microbiology Laboratory; 2023 https://github.com/phac-nml/refseq_masher accessed 5 June 2023
  24. Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL et al. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun 2021; 12:4188 [View Article] [PubMed]
    [Google Scholar]
  25. Annavajhala MK, Gomez-Simmonds A, Uhlemann A-C. Multidrug-resistant Enterobacter cloacae complex emerging as a global, diversifying threat. Front Microbiol 2019; 10:44 [View Article] [PubMed]
    [Google Scholar]
  26. Brenner DJ, Grimont PA, Steigerwalt AG, Fanning GR, Ageron E et al. Classification of citrobacteria by DNA hybridization: designation of Citrobacter farmeri sp. nov., Citrobacter youngae sp. nov., Citrobacter braakii sp. nov., Citrobacter werkmanii sp. nov., Citrobacter sedlakii sp. nov., and three unnamed Citrobacter genomospecies. Int J Syst Bacteriol 1993; 43:645–658 [View Article] [PubMed]
    [Google Scholar]
  27. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  28. Sutton GG, Brinkac LM, Clarke TH, Fouts DE. Enterobacter roggenkampii sp. nov., and Enterobacter muelleri is a later heterotypic synonym of Enterobacter asburiae based on computational analysis of sequenced Enterobacter genomes. F1000Res 2018; 7:521 [View Article]
    [Google Scholar]
  29. Mölder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH et al. Sustainable data analysis with Snakemake. F1000Res 2021; 10:33 [View Article] [PubMed]
    [Google Scholar]
  30. Wick R. Filtlong; 2022 https://github.com/rrwick/Porechop accessed 3 January 2023
  31. Wick R. Filtlong; 2022 https://github.com/rrwick/Filtlong accessed 3 January 2023
  32. Krueger F, James F, Ewels P, Afyounian E, Schuster-Boeckler B. Trimgalore: V0.6.7. Zenodo 2021 [View Article]
    [Google Scholar]
  33. Andrews S. FastQC; 2020 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ accessed 3 January 2023
  34. De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 2018; 34:2666–2669 [View Article] [PubMed]
    [Google Scholar]
  35. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  36. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  37. Vaser R, Šikić M. Time- and memory-efficient genome assembly with Raven. Nat Comput Sci 2021; 1:332–336 [View Article] [PubMed]
    [Google Scholar]
  38. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 2016; 32:2103–2110 [View Article] [PubMed]
    [Google Scholar]
  39. Wick RR, Judd LM, Cerdeira LT, Hawkey J, Méric G et al. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biol 2021; 22:266 [View Article] [PubMed]
    [Google Scholar]
  40. Wick RR, Holt KE. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput Biol 2022; 18:e1009802 [View Article] [PubMed]
    [Google Scholar]
  41. Zimin AV, Salzberg SL. The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies. PLoS Comput Biol 2020; 16:e1007981 [View Article] [PubMed]
    [Google Scholar]
  42. Bharat A, Petkau A, Avery BP, Chen JC, Folster JP et al. Correlation between phenotypic and in silico detection of antimicrobial resistance in Salmonella enterica in Canada using Staramr. Microorganisms 2022; 10:292 [View Article] [PubMed]
    [Google Scholar]
  43. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020; 75:3491–3500 [View Article] [PubMed]
    [Google Scholar]
  44. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [View Article] [PubMed]
    [Google Scholar]
  45. Seemann T. mlst; 2023 https://github.com/tseemann/mlst accessed 3 January 2023
  46. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol 2020; 21:180 [View Article] [PubMed]
    [Google Scholar]
  47. Redondo-Salvo S, Bartomeus-Peñalver R, Vielva L, Tagg KA, Webb HE et al. COPLA, a taxonomic classifier of plasmids. BMC Bioinform 2021; 22:390 [View Article] [PubMed]
    [Google Scholar]
  48. Robertson J, Nash JHE. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb Genom 2018; 4:e000206 [View Article] [PubMed]
    [Google Scholar]
  49. Robertson J, Bessonov K, Schonfeld J, Nash JHE. Universal whole-sequence-based plasmid typing and its utility to prediction of host range and epidemiological surveillance. Microb Genom 2020; 6:mgen000435 [View Article] [PubMed]
    [Google Scholar]
  50. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004; 5:R12 [View Article] [PubMed]
    [Google Scholar]
  51. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–D36 [View Article] [PubMed]
    [Google Scholar]
  52. Petkau A, Mabon P, Sieffert C, Knox NC, Cabral J et al. SNVPhyl: a single nucleotide variant phylogenomics pipeline for microbial genomic epidemiology. Microb Genom 2017; 3:e000116 [View Article] [PubMed]
    [Google Scholar]
  53. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21 [View Article] [PubMed]
    [Google Scholar]
  54. R Core Team R: A language and environment for statistical computing. In R Foundation for Statistical Computing Vienna, Austria: 2022 https://www.R-project.org/
    [Google Scholar]
  55. Wickham H, Averick M, Bryan J, Chang W, McGowan L et al. Welcome to the tidyverse. JOSS 2019; 4:1686 [View Article]
    [Google Scholar]
  56. Pedersen TL. patchwork: the composer of plots; 2022 https://cran.r-project.org/web/packages/patchwork/index.html accessed 28 June 2023
  57. Kassambara A. Ggpubr: ‘Ggplot2’ based publication ready plots; 2023 https://cran.rproject.org/web/packages/ggpubr/index.html accessed 29 May 2023
  58. Schmartz GP, Hartung A, Hirsch P, Kern F, Fehlmann T et al. PLSDB: advancing a comprehensive database of bacterial plasmids. Nucleic Acids Res 2022; 50:D273–D278 [View Article] [PubMed]
    [Google Scholar]
  59. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article] [PubMed]
    [Google Scholar]
  60. Poirel L, Bonnin RA, Nordmann P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother 2012; 56:559–562 [View Article] [PubMed]
    [Google Scholar]
  61. Carrër A, Poirel L, Eraksoy H, Cagatay AA, Badur S et al. Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrob Agents Chemother 2008; 52:2950–2954 [View Article] [PubMed]
    [Google Scholar]
  62. Sattler J, Tsvetkov T, Stelzer Y, Schäfer S, Sommer J et al. Emergence of Tn 1999.7, a new transposon in BLA OXA-48 -harboring plasmids associated with increased plasmid stability. Antimicrob Agents Chemother 2022; 66:e00787-22 [View Article]
    [Google Scholar]
  63. Beyrouthy R, Robin F, Delmas J, Gibold L, Dalmasso G et al. IS1R-mediated plasticity of IncL/M plasmids leads to the insertion of bla OXA-48 into the Escherichia coli chromosome. Antimicrob Agents Chemother 2014; 58:3785–3790 [View Article] [PubMed]
    [Google Scholar]
  64. Potron A, Rondinaud E, Poirel L, Belmonte O, Boyer S et al. Genetic and biochemical characterisation of OXA-232, a carbapenem-hydrolysing class D β-lactamase from Enterobacteriaceae. Int J Antimicrob Agents 2013; 41:325–329 [View Article] [PubMed]
    [Google Scholar]
  65. Gobeille Paré S, Mataseje LF, Ruest A, Boyd DA, Lefebvre B et al. Arrival of the rare carbapenemase OXA-204 in Canada causing a multispecies outbreak over 3 years. J Antimicrob Chemother 2020; 75:2787–2796 [View Article] [PubMed]
    [Google Scholar]
  66. Potron A, Poirel L, Dortet L, Nordmann P. Characterisation of OXA-244, a chromosomally-encoded OXA-48-like β-lactamase from Escherichia coli. Int J Antimicrob Agents 2016; 47:102–103 [View Article] [PubMed]
    [Google Scholar]
  67. Emeraud C, Girlich D, Bonnin RA, Jousset AB, Naas T et al. Emergence and polyclonal dissemination of OXA-244-producing Escherichia coli, France. Emerg Infect Dis 2021; 27:1206–1210 [View Article] [PubMed]
    [Google Scholar]
  68. Findlay J, Perreten V, Poirel L, Nordmann P. Molecular analysis of OXA-48-producing Escherichia coli in Switzerland from 2019 to 2020. Eur J Clin Microbiol Infect Dis 2022; 41:1355–1360 [View Article] [PubMed]
    [Google Scholar]
  69. David S, Cohen V, Reuter S, Sheppard AE, Giani T et al. Integrated chromosomal and plasmid sequence analyses reveal diverse modes of carbapenemase gene spread among Klebsiella pneumoniae. Proc Natl Acad Sci U S A 2020; 117:25043–25054 [View Article] [PubMed]
    [Google Scholar]
  70. Patiño-Navarrete R, Rosinski-Chupin I, Cabanel N, Zongo PD, Héry M et al. Specificities and commonalities of carbapenemase-producing Escherichia coli isolated in France from 2012 to 2015. mSystems 2022; 7:e0116921 [View Article] [PubMed]
    [Google Scholar]
  71. Lerminiaux N, Mitchell R, Bartoszko J, Davis I, Ellis C et al. Plasmid genomic epidemiology of blaKPC CArbApenemase-producing Enterobacterales in Canada, 2010–2021. Antimicrob Agents Chemother 2023; 67:e00860-23 [View Article]
    [Google Scholar]
  72. Nordmann P, Poirel L, Walsh TR, Livermore DM. The emerging NDM carbapenemases. Trends Microbiol 2011; 19:588–595 [View Article] [PubMed]
    [Google Scholar]
  73. Yu Z, Zhang Z, Shi L, Hua S, Luan T et al. In silico characterization of IncX3 plasmids carrying blaOXA-181 in Enterobacterales. Front Cell Infect Microbiol 2022; 12: [View Article]
    [Google Scholar]
  74. Mouftah SF, Pál T, Darwish D, Ghazawi A, Villa L et al. Epidemic IncX3 plasmids spreading carbapenemase genes in the United Arab Emirates and worldwide. Infect Drug Resist 2019; 12:1729–1742 [View Article] [PubMed]
    [Google Scholar]
  75. Sheppard AE, Stoesser N, German-Mesner I, Vegesana K, Sarah Walker A et al. TETyper: a bioinformatic pipeline for classifying variation and genetic contexts of transposable elements from short-read whole-genome sequencing data. Microb Genom 2018; 4:e000232 [View Article] [PubMed]
    [Google Scholar]
  76. Zwittink RD, Wielders CC, Notermans DW, Verkaik NJ, Schoffelen AF et al. Multidrug-resistant organisms in patients from Ukraine in the Netherlands, March to August 2022. Euro Surveill 2022; 27:2200896 [View Article] [PubMed]
    [Google Scholar]
  77. Mancini S, Poirel L, Tritten M-L, Lienhard R, Bassi C et al. Emergence of an MDR Klebsiella pneumoniae ST231 producing OXA-232 and RmtF in Switzerland. J Antimicrob Chemother 2018; 73:821–823 [View Article] [PubMed]
    [Google Scholar]
  78. Roer L, Overballe-Petersen S, Hansen F, Schønning K, Wang M et al. Escherichia coli sequence type 410 is causing New International High-Risk Clones. mSphere 2018; 3:10 [View Article] [PubMed]
    [Google Scholar]
  79. Notermans DW, Schoffelen AF, Landman F, Wielders CCH, Witteveen S et al. A genetic cluster of OXA-244 carbapenemase-producing Escherichia coli ST38 with putative uropathogenicity factors in the Netherlands. J Antimicrob Chemother 2022; 77:3205–3208 [View Article] [PubMed]
    [Google Scholar]
  80. Sghaier S, Abbassi MS, Pascual A, Serrano L, Díaz-De-Alba P et al. Extended-spectrum β-lactamase-producing Enterobacteriaceae from animal origin and wastewater in Tunisia: first detection of O25b-B23-CTX-M-27-ST131 Escherichia coli and CTX-M-15/OXA-204-producing Citrobacter freundii from wastewater. J Glob Antimicrob Resist 2019; 17:189–194 [View Article] [PubMed]
    [Google Scholar]
  81. Biez L, Bonnin RA, Emeraud C, Birer A, Jousset AB et al. Nationwide molecular epidemiology of carbapenemase-producing Citrobacter spp. in France in 2019 and 2020. mSphere 2023; 8:e0036623 [View Article] [PubMed]
    [Google Scholar]
  82. Fordham S, Mantzouratou A, Sheridan EA. Bioinformatic analyses of plasmid resistome changes in pOXA-48. Microbiology 2022; 03 [View Article]
    [Google Scholar]
  83. Dong H, Li Y, Cheng J, Xia Z, Liu W et al. Genomic epidemiology insights on NDM-producing pathogens revealed the pivotal role of plasmids on blaNDM transmission. Microbiol Spectr 2022; 10:e0215621 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001257
Loading
/content/journal/mgen/10.1099/mgen.0.001257
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error