Skip to content
1887

Abstract

Sequence comparison of 16S rRNA PCR amplicons is an established approach to taxonomically identify bacterial isolates and profile complex microbial communities. One potential application of recent advances in long-read sequencing technologies is to sequence entire rRNA operons and capture significantly more phylogenetic information compared to sequencing of the 16S rRNA (or regions thereof) alone, with the potential to increase the proportion of amplicons that can be reliably classified to lower taxonomic ranks. Here we describe (enome-derived ibosomal peroatabase), a publicly available database of quality-checked 16S-ITS-23S rRNA operons, accompanied by multiple taxonomic classifications. will aid researchers in analysis of their data and act as a standardised database to allow comparison of results between studies.

Funding
This study was supported by the:
  • Teagasc (Award 2020018)
    • Principle Award Recipient: MeghanaSrinivas
  • Science Foundation Ireand (Award SFI/12/RC/2273_P2)
    • Principle Award Recipient: JohnG Kenny
  • National Health and Medical Research Council (Award GNT1145631)
    • Principle Award Recipient: TimothyP Stinear
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001255
2024-06-07
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/6/mgen001255.html?itemId=/content/journal/mgen/10.1099/mgen.0.001255&mimeType=html&fmt=ahah

References

  1. Chakravorty S, Helb D, Burday M, Connell N, Alland D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods 2007; 69:330–339 [View Article] [PubMed]
    [Google Scholar]
  2. Van de Peer Y, Chapelle S, De Wachter R. A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res 1996; 24:3381–3391 [View Article] [PubMed]
    [Google Scholar]
  3. Stevens BM, Creed TB, Reardon CL, Manter DK. Comparison of Oxford Nanopore Technologies and illumina MiSeq sequencing with mock communities and agricultural soil. Sci Rep 2023; 13:9323 [View Article] [PubMed]
    [Google Scholar]
  4. Catozzi C, Ceciliani F, Lecchi C, Talenti A, Vecchio D et al. Short communication: milk microbiota profiling on water buffalo with full-length 16S rRNA using nanopore sequencing. J Dairy Sci 2020; 103:2693–2700 [View Article] [PubMed]
    [Google Scholar]
  5. Lemoinne A, Dirberg G, Georges M, Robinet T. Fine-scale congruence in bacterial community structure from marine sediments sequenced by short-reads on illumina and long-reads on nanopore. Mol Biol 2023 [View Article]
    [Google Scholar]
  6. Waechter C, Fehse L, Welzel M, Heider D, Babalija L et al. Comparative analysis of full-length 16s ribosomal RNA genome sequencing in human fecal samples using primer sets with different degrees of degeneracy. Front Genet 2023; 14:1213829 [View Article] [PubMed]
    [Google Scholar]
  7. Huggins LG, Colella V, Atapattu U, Koehler AV, Traub RJ. Nanopore sequencing using the full-length 16S rRNA gene for detection of blood-borne bacteria in dogs reveals a novel species of hemotropic mycoplasma. Microbiol Spectr 2022; 10:e0308822 [View Article] [PubMed]
    [Google Scholar]
  8. Matsuo Y, Komiya S, Yasumizu Y, Yasuoka Y, Mizushima K et al. Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinIONTM nanopore sequencing confers species-level resolution. BMC Microbiol 2021; 21:35 [View Article] [PubMed]
    [Google Scholar]
  9. Handy MY, Sbardellati DL, Yu M, Saleh NW, Ostwald MM et al. Incipiently social carpenter bees (Xylocopa) host distinctive gut bacterial communities and display geographical structure as revealed by full-length PacBio 16S rRNA sequencing. Mol Ecol 2023; 32:1530–1543 [View Article] [PubMed]
    [Google Scholar]
  10. Zhang T, Li H, Ma S, Cao J, Liao H et al. The newest Oxford Nanopore R10.4.1 full-length 16S rRNA sequencing enables the accurate resolution of species-level microbial community profiling. Appl Environ Microbiol 2023; 89:e00605-23 [View Article] [PubMed]
    [Google Scholar]
  11. Lin X, Waring K, Tyson J, Ziels RM. High-accuracy meets high-throughput for microbiome profiling with near full-length 16S rRNA amplicon sequencing on the Nanopore platform. Microbiology 2023 [View Article]
    [Google Scholar]
  12. Callahan BJ, Wong J, Heiner C, Oh S, Theriot CM et al. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res 2019; 47:e103 [View Article] [PubMed]
    [Google Scholar]
  13. Earl JP, Adappa ND, Krol J, Bhat AS, Balashov S et al. Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes. Microbiome 2018; 6:190 [View Article] [PubMed]
    [Google Scholar]
  14. Al’Khafaji AM, Smith JT, Garimella KV, Babadi M, Popic V et al. High-throughput RNA isoform sequencing using programmed cDNA concatenation. Nat Biotechnol 2024; 42:582–586 [View Article] [PubMed]
    [Google Scholar]
  15. Karst SM, Ziels RM, Kirkegaard RH, Sørensen EA, McDonald D et al. High-accuracy long-read amplicon sequences using unique molecular identifiers with nanopore or PacBio sequencing. Nat Methods 2021; 18:165–169 [View Article] [PubMed]
    [Google Scholar]
  16. Kinoshita Y, Niwa H, Uchida-Fujii E, Nukada T. Establishment and assessment of an amplicon sequencing method targeting the 16S-ITS-23S rRNA operon for analysis of the equine gut microbiome. Sci Rep 2021; 11:11884 [View Article] [PubMed]
    [Google Scholar]
  17. Martijn J, Lind AE, Schön ME, Spiertz I, Juzokaite L et al. Confident phylogenetic identification of uncultured prokaryotes through long read amplicon sequencing of the 16S-ITS-23S rRNA operon. Environ Microbiol 2019; 21:2485–2498 [View Article] [PubMed]
    [Google Scholar]
  18. Seol D, Lim JS, Sung S, Lee YH, Jeong M et al. Microbial identification using rRNA operon region: database and tool for metataxonomics with long-read sequence. Microbiol Spectr 2022; 10:e0201721 [View Article] [PubMed]
    [Google Scholar]
  19. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–D596 [View Article] [PubMed]
    [Google Scholar]
  20. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014; 42:D633–D642 [View Article] [PubMed]
    [Google Scholar]
  21. McDonald D, Jiang Y, Balaban M, Cantrell K, Zhu Q et al. Greengenes2 unifies microbial data in a single reference tree. Nat Biotechnol 2023 https://www.nature.com/articles/s41587-023-01845-1 [PubMed]
    [Google Scholar]
  22. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 2022; 50:D785–D794 [View Article] [PubMed]
    [Google Scholar]
  23. R Core Team R: A Language and Environment for Statistical Computing Vienna, Austria: R Foundation for Statistical Computing; 2021
    [Google Scholar]
  24. Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019; 35:526–528 [View Article] [PubMed]
    [Google Scholar]
  25. Brewer TE, Albertsen M, Edwards A, Kirkegaard RH, Rocha EPC et al. Unlinked rRNA genes are widespread among bacteria and archaea. ISME J 2020; 14:597–608 [View Article] [PubMed]
    [Google Scholar]
  26. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26:841–842 [View Article] [PubMed]
    [Google Scholar]
  27. Brian Bushnell Bbmap; 2021
  28. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 2016; 4:e2584 [View Article] [PubMed]
    [Google Scholar]
  29. Stewart FJ, Cavanaugh CM. Intragenomic variation and evolution of the internal transcribed spacer of the rRNA operon in bacteria. J Mol Evol 2007; 65:44–67 [View Article] [PubMed]
    [Google Scholar]
  30. Pereira TJ, De Santiago A, Schuelke T, Hardy SM, Bik HM. The impact of intragenomic rRNA variation on metabarcoding‐derived diversity estimates: a case study from marine nematodes. Environ DNA 2020; 2:519–534 [View Article]
    [Google Scholar]
  31. Sun D-L, Jiang X, Wu QL, Zhou N-Y. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl Environ Microbiol 2013; 79:5962–5969 [View Article] [PubMed]
    [Google Scholar]
  32. Shen W, Ren H. TaxonKit: a practical and efficient NCBI taxonomy toolkit. J Genet Genom 2021; 48:844–850 [View Article] [PubMed]
    [Google Scholar]
  33. Pettengill EA, Pettengill JB, Binet R. Phylogenetic analyses of Shigella and Enteroinvasive Escherichia coli for the identification of molecular epidemiological markers: whole-genome comparative analysis does not support distinct genera designation. Front Microbiol 2015; 6:1573 [View Article] [PubMed]
    [Google Scholar]
  34. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [View Article] [PubMed]
    [Google Scholar]
  35. Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet 2000; 16:276–277 [View Article] [PubMed]
    [Google Scholar]
  36. Wittouck S. tidygenomes: a grammar of genome Data manipulation; 2024 https://github.com/SWittouck/tidygenomes
  37. Wickham H, Averick M, Bryan J, Chang W, McGowan L et al. Welcome to the Tidyverse. J Open Source Softw 2019; 4:1686 [View Article]
    [Google Scholar]
  38. Kassambara A. ggcorrplot: visualization of a correlation matrix using ‘ggplot2; 2023 https://CRAN.R-project.org/package=ggcorrplot
  39. Petrone JR, Rios Glusberger P, George CD, Milletich PL, Ahrens AP et al. RESCUE: a validated Nanopore pipeline to classify bacteria through long-read, 16S-ITS-23S rRNA sequencing. Front Microbiol 2023; 14:1201064 [View Article] [PubMed]
    [Google Scholar]
  40. Olivier SA, Bull MK, Strube ML, Murphy R, Ross T. Long-read MinIONTM sequencing of 16S and 16S-ITS-23S rRNA genes provides species-level resolution of Lactobacillaceae in mixed communities. Front Microbiol 2023; 14:1290756 [View Article] [PubMed]
    [Google Scholar]
  41. Kalia VC, Kumar R, Kumar P, Koul S. A genome-wide profiling strategy as an aid for searching unique identification biomarkers for Streptococcus. Indian J Microbiol 2016; 56:46–58 [View Article] [PubMed]
    [Google Scholar]
  42. Lal D, Verma M, Lal R. Exploring internal features of 16S rRNA gene for identification of clinically relevant species of the genus Streptococcus. Ann Clin Microbiol Antimicrob 2011; 10:28 [View Article] [PubMed]
    [Google Scholar]
  43. Devanga Ragupathi NK, Muthuirulandi Sethuvel DP, Inbanathan FY, Veeraraghavan B. Accurate differentiation of Escherichia coli and Shigella serogroups: challenges and strategies. New Microbes New Infect 2018; 21:58–62 [View Article]
    [Google Scholar]
  44. Deurenberg RH, Bathoorn E, Chlebowicz MA, Couto N, Ferdous M et al. Application of next generation sequencing in clinical microbiology and infection prevention. J Biotechnol 2017; 243:16–24 [View Article] [PubMed]
    [Google Scholar]
  45. Cuscó A, Catozzi C, Viñes J, Sanchez A, Francino O. Microbiota profiling with long amplicons using nanopore sequencing: full-length 16S rRNA gene and the 16S-ITS-23S of the rrn operon. F1000Res 2018; 7:1755 [View Article] [PubMed]
    [Google Scholar]
  46. Planý M, Sitarčík J, Pavlović J, Budiš J, Koreňová J et al. Evaluation of bacterial consortia associated with dairy fermentation by ribosomal RNA (rrn) operon metabarcoding strategy using MinION device. Food Biosci 2023; 51:102308 [View Article]
    [Google Scholar]
  47. Benítez-Páez A, Sanz Y. Multi-locus and long amplicon sequencing approach to study microbial diversity at species level using the MinIONTM portable nanopore sequencer. Gigascience 2017; 6:1–12 [View Article] [PubMed]
    [Google Scholar]
  48. Gehrig JL, Portik DM, Driscoll MD, Jackson E, Chakraborty S et al. Finding the right fit: evaluation of short-read and long-read sequencing approaches to maximize the utility of clinical microbiome data. Microb Genom 2022; 8:000794 [View Article] [PubMed]
    [Google Scholar]
  49. Graf J, Ledala N, Caimano MJ, Jackson E, Gratalo D et al. High-resolution differentiation of enteric bacteria in premature infant fecal microbiomes using a novel rRNA amplicon. mBio 2021; 12:e03656-20 [View Article] [PubMed]
    [Google Scholar]
  50. Spreckels JE, Fernández-Pato A, Kruk M, Kurilshikov A, Garmaeva S et al. Analysis of microbial composition and sharing in low-biomass human milk samples: a comparison of DNA isolation and sequencing techniques. ISME Commun 2023; 3:116 [View Article] [PubMed]
    [Google Scholar]
  51. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 2016; 13:581–583 [View Article] [PubMed]
    [Google Scholar]
  52. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article] [PubMed]
    [Google Scholar]
  53. Curry KD, Wang Q, Nute MG, Tyshaieva A, Reeves E et al. Emu: species-level microbial community profiling of full-length 16S rRNA Oxford nanopore sequencing data. Nat Methods 2022; 19:845–853 [View Article] [PubMed]
    [Google Scholar]
  54. Rodríguez-Pérez H, Ciuffreda L, Flores C. NanoCLUST: a species-level analysis of 16S rRNA nanopore sequencing data. Bioinform Oxf Engl 2021; 37:1600–1601 [View Article] [PubMed]
    [Google Scholar]
  55. Deep A, Bludau D, Welzel M, Clemens S, Heider D et al. Natrix2 – improved amplicon workflow with novel Oxford Nanopore Technologies support and enhancements in clustering, classification and taxonomic databases. Metabarcoding Metagenom 2023; 7:e109389 [View Article]
    [Google Scholar]
  56. Kerkhof LJ, Roth PA, Deshpande SV, Bernhards RC, Liem AT et al. A ribosomal operon database and MegaBLAST settings for strain-level resolution of microbiomes. FEMS Microbes 2022; 3:xtac002 [View Article] [PubMed]
    [Google Scholar]
  57. Dowden RA, McGuinness LR, Wisniewski PJ, Campbell SC, Guers JJ et al. Host genotype and exercise exhibit species-level selection for members of the gut bacterial communities in the mouse digestive system. Sci Rep 2020; 10:8984 [View Article] [PubMed]
    [Google Scholar]
  58. Johnson JS, Spakowicz DJ, Hong B-Y, Petersen LM, Demkowicz P et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 2019; 10:5029 [View Article] [PubMed]
    [Google Scholar]
  59. Sun DL, Jiang X, Wu QL, Zhou NY. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl Environ Microbiol 2013; 79:5962–5969 [View Article] [PubMed]
    [Google Scholar]
  60. de Oliveira Martins L, Page AJ, Mather AE, Charles IG. Taxonomic resolution of the ribosomal RNA operon in bacteria: implications for its use with long-read sequencing. NAR Genom Bioinform 2020; 2:lqz016 [View Article] [PubMed]
    [Google Scholar]
  61. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 2017; 551:457–463 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001255
Loading
/content/journal/mgen/10.1099/mgen.0.001255
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error