1887

Abstract

The interaction between a host and its microbiome is an area of intense study. For the human host, it is known that the various body-site-associated microbiomes impact heavily on health and disease states. For instance, the oral microbiome is a source of various pathogens and potential antibiotic resistance gene pools. The effect of historical changes to the human host and environment to the associated microbiome, however, has been less well explored. In this review, we characterize several historical and prehistoric events which are considered to have impacted the oral environment and therefore the bacterial communities residing within it. The link between evolutionary changes to the oral microbiota and the significant societal and behavioural changes occurring during the pre-Neolithic, Agricultural Revolution, Industrial Revolution and Antibiotic Era is outlined. While previous studies suggest the functional profile of these communities may have shifted over the centuries, there is currently a gap in knowledge that needs to be filled. Biomolecular archaeological evidence of innate antimicrobial resistance within the oral microbiome shows an increase in the abundance of antimicrobial resistance genes since the advent and widespread use of antibiotics in the modern era. Nevertheless, a lack of research into the prevalence and evolution of antimicrobial resistance within the oral microbiome throughout history hinders our ability to combat antimicrobial resistance in the modern era.

Funding
This study was supported by the:
  • University of Bradford
    • Principle Award Recipient: FrancescaStandeven
  • University of Bradford
    • Principle Award Recipient: GwynDahlquist-Axe
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001251
2024-05-13
2024-05-23
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/5/mgen001251.html?itemId=/content/journal/mgen/10.1099/mgen.0.001251&mimeType=html&fmt=ahah

References

  1. Kilian M, Chapple ILC, Hannig M, Marsh PD, Meuric V et al. The oral microbiome - an update for oral healthcare professionals. Br Dent J 2016; 221:657–666 [View Article] [PubMed]
    [Google Scholar]
  2. de Bary A. Die Erscheinung der Symbiose: Vortrag gehalten auf der Versammlung Deutscher Naturforscher und Aerzte zu Cassel. Trübner 1879
    [Google Scholar]
  3. Oulhen N, Schulz BJ, Carrier TJ. English translation of Heinrich Anton de Bary’s 1878 speech, ‘Die Erscheinung der Symbiose’ (‘De la symbiose’). Symbiosis 2016; 69:131–139 [View Article]
    [Google Scholar]
  4. Salvucci E. The human-microbiome superorganism and its modulation to restore health. Int J Food Sci Nutr 2019; 70:781–795 [View Article] [PubMed]
    [Google Scholar]
  5. Liu Q, Liu Q, Meng H, Lv H, Liu Y et al. Staphylococcus epidermidis contributes to healthy maturation of the nasal microbiome by stimulating antimicrobial peptide production. Cell Host Microbe 2020; 27:68–78 [View Article] [PubMed]
    [Google Scholar]
  6. Auriemma RS, Scairati R, Del Vecchio G, Liccardi A, Verde N et al. The vaginal microbiome: a long urogenital colonization throughout woman life. Front Cell Infect Microbiol 2021; 11:686167 [View Article] [PubMed]
    [Google Scholar]
  7. Gao L, Xu T, Huang G, Jiang S, Gu Y et al. Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell 2018; 9:488–500 [View Article] [PubMed]
    [Google Scholar]
  8. Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol 2018; 16:143–155 [View Article] [PubMed]
    [Google Scholar]
  9. Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med 2016; 8:51 [View Article] [PubMed]
    [Google Scholar]
  10. Yuan X, Chang C, Chen X, Li K. Emerging trends and focus of human gastrointestinal microbiome research from 2010-2021: a visualized study. J Transl Med 2021; 19:327 [View Article] [PubMed]
    [Google Scholar]
  11. Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev 2012; 70:S38–S44 [View Article] [PubMed]
    [Google Scholar]
  12. Davenport ER, Sanders JG, Song SJ, Amato KR, Clark AG et al. The human microbiome in evolution. BMC Biol 2017; 15:127 [View Article] [PubMed]
    [Google Scholar]
  13. Bombaywala S, Mandpe A, Paliya S, Kumar S. Antibiotic resistance in the environment: a critical insight on its occurrence, fate, and eco-toxicity. Environ Sci Pollut Res 2021; 28:24889–24916 [View Article]
    [Google Scholar]
  14. Barber M, Dutton AAC, Beard MA, Elmes PC, Williams R. Reversal of antibiotic resistance in hospital staphylococcal infection. Br Med J 1960; 1:11–17 [View Article] [PubMed]
    [Google Scholar]
  15. World Health Organisation Antibiotic resistance. World Health Organisation; 2020 https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance accessed 13 January 2023
  16. McArthur AG, Tsang KK. Antimicrobial resistance surveillance in the genomic age. Ann N Y Acad Sci 2017; 1388:78–91 [View Article] [PubMed]
    [Google Scholar]
  17. Arnold KE, Williams NJ, Bennett M. “Disperse abroad in the land”: the role of wildlife in the dissemination of antimicrobial resistance. Biol Lett 2016; 12:20160137 [View Article] [PubMed]
    [Google Scholar]
  18. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J et al. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 2010; 8:251–259 [View Article] [PubMed]
    [Google Scholar]
  19. von Wintersdorff CJH, Penders J, van Niekerk JM, Mills ND, Majumder S et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol 2016; 7:173 [View Article] [PubMed]
    [Google Scholar]
  20. Arzanlou M, Chai WC, Venter H. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays Biochem 2017; 61:49–59 [View Article] [PubMed]
    [Google Scholar]
  21. Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 2015; 13:42–51 [View Article] [PubMed]
    [Google Scholar]
  22. Singh S, Verma N, Taneja N. The human gut resistome: current concepts & future prospects. Indian J Med Res 2019; 150:345–358 [View Article] [PubMed]
    [Google Scholar]
  23. Bycura D, Santos AC, Shiffer A, Kyman S, Winfree K et al. Impact of different exercise modalities on the human gut microbiome. Sports 2021; 9:14 [View Article] [PubMed]
    [Google Scholar]
  24. De Angelis M, Ferrocino I, Calabrese FM, De Filippis F, Cavallo N et al. Diet influences the functions of the human intestinal microbiome. Sci Rep 2020; 10:4247 [View Article] [PubMed]
    [Google Scholar]
  25. Fouladi F, Bailey MJ, Patterson WB, Sioda M, Blakley IC et al. Air pollution exposure is associated with the gut microbiome as revealed by shotgun metagenomic sequencing. Environ Int 2020; 138:105604 [View Article] [PubMed]
    [Google Scholar]
  26. Lommi S, Manzoor M, Engberg E, Agrawal N, Lakka TA et al. The composition and functional capacities of saliva microbiota differ between children with low and high sweet treat consumption. Front Nutr 2022; 9:864687 [View Article] [PubMed]
    [Google Scholar]
  27. Malan-Muller S, Valles-Colomer M, Foxx CL, Vieira-Silva S, van den Heuvel LL et al. Exploring the relationship between the gut microbiome and mental health outcomes in a posttraumatic stress disorder cohort relative to trauma-exposed controls. Eur Neuropsychopharmacol 2022; 56:24–38 [View Article] [PubMed]
    [Google Scholar]
  28. Rinott E, Meir AY, Tsaban G, Zelicha H, Kaplan A et al. The effects of the Green-Mediterranean diet on cardiometabolic health are linked to gut microbiome modifications: a randomized controlled trial. Genome Med 2022; 14:29 [View Article] [PubMed]
    [Google Scholar]
  29. Saxena R, Prasoodanan P K V, Gupta SV, Gupta S, Waiker P et al. Assessing the effect of smokeless tobacco consumption on oral microbiome in healthy and oral cancer patients. Front Cell Infect Microbiol 2022; 12:841465 [View Article] [PubMed]
    [Google Scholar]
  30. Singh P, Rawat A, Saadaoui M, Elhag D, Tomei S et al. Tipping the balance: vitamin D inadequacy in children impacts the major Gut bacterial Phyla. Biomedicines 2022; 10:278 [View Article] [PubMed]
    [Google Scholar]
  31. Willis JR, Gabaldón T. The human oral microbiome in health and disease: from sequences to ecosystems. Microorganisms 2020; 8:308 [View Article] [PubMed]
    [Google Scholar]
  32. Zaura E, Keijser BJF, Huse SM, Crielaard W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol 2009; 9:259 [View Article] [PubMed]
    [Google Scholar]
  33. Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J 2012; 6:1176–1185 [View Article] [PubMed]
    [Google Scholar]
  34. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL. Microbial complexes in subgingival plaque. J Clin Periodontol 1998; 25:134–144 [View Article]
    [Google Scholar]
  35. Benítez-Páez A, Belda-Ferre P, Simón-Soro A, Mira A. Microbiota diversity and gene expression dynamics in human oral biofilms. BMC Genom 2014; 15:311 [View Article] [PubMed]
    [Google Scholar]
  36. Costalonga M, Herzberg MC. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol Lett 2014; 162:22–38 [View Article] [PubMed]
    [Google Scholar]
  37. Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol 2018; 16:745–759 [View Article] [PubMed]
    [Google Scholar]
  38. Buckberry J, Crane-Kramer G. The dark satanic mills: evaluating patterns of health in England during the industrial revolution. Int J Paleopathol 2022; 39:93–108 [View Article] [PubMed]
    [Google Scholar]
  39. Echeverria MS, Schuch HS, Cenci MS, Motta JVS, Bertoldi AD et al. Trajectories of sugar consumption and dental caries in early childhood. J Dent Res 2022; 101:724–730 [View Article] [PubMed]
    [Google Scholar]
  40. Zhang JS, Chu C-H, Yu OY. Oral microbiome and dental caries development. Dent J 2022; 10:184 [View Article] [PubMed]
    [Google Scholar]
  41. Spragge F, Bakkeren E, Jahn MT, B N Araujo E, Pearson CF et al. Microbiome diversity protects against pathogens by nutrient blocking. Science 2023; 382:eadj3502 [View Article] [PubMed]
    [Google Scholar]
  42. Liu Y-L, Nascimento M, Burne RA. Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries. Int J Oral Sci 2012; 4:135–140 [View Article] [PubMed]
    [Google Scholar]
  43. Utter DR, Borisy GG, Eren AM, Cavanaugh CM, Mark Welch JL. Metapangenomics of the oral microbiome provides insights into habitat adaptation and cultivar diversity. Genome Biol 2020; 21:293 [View Article] [PubMed]
    [Google Scholar]
  44. Granato ET, Meiller-Legrand TA, Foster KR. The evolution and ecology of bacterial warfare. Curr Biol 2019; 29:R521–R537 [View Article] [PubMed]
    [Google Scholar]
  45. Zoued A, Brunet YR, Durand E, Aschtgen M-S, Logger L et al. Architecture and assembly of the Type VI secretion system. Biochimica et Biophysica Acta (BBA) - Mol Cell Res 2014; 1843:1664–1673 [View Article]
    [Google Scholar]
  46. Li Y-H, Tian X-L. Microbial Interactions in Biofilms: Impacts on Homeostasis and Pathogenesis IntechOpen; 2016 [View Article]
    [Google Scholar]
  47. Duran-Pinedo A, Solbiati J, Teles F, Teles R, Zang Y et al. Long-term dynamics of the human oral microbiome during clinical disease progression. BMC Biol 2021; 19:240 [View Article] [PubMed]
    [Google Scholar]
  48. Boon E, Meehan CJ, Whidden C, Wong DH-J, Langille MGI et al. Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol Rev 2014; 38:90–118 [View Article] [PubMed]
    [Google Scholar]
  49. Das P, Babaei P, Nielsen J. Metagenomic analysis of microbe-mediated vitamin metabolism in the human gut microbiome. BMC Genom 2019; 20:208 [View Article] [PubMed]
    [Google Scholar]
  50. Pizzorno JE, Murray MT. Encyclopedia of Natural Medicine Prima Publishing; 1998
    [Google Scholar]
  51. Willis JR, Gabaldón T. The human oral microbiome in health and disease: from sequences to ecosystems. Microorganisms 2020; 8:308 [View Article] [PubMed]
    [Google Scholar]
  52. Wingfield B, Lapsley C, McDowell A, Miliotis G, McLafferty M et al. Variations in the oral microbiome are associated with depression in young adults. Sci Rep 2021; 11:15009 [View Article] [PubMed]
    [Google Scholar]
  53. Ogunrinola GA, Oyewale JO, Oshamika OO, Olasehinde GI. The human microbiome and its impacts on health. Int J Microbiol 2020; 2020:8045646 [View Article] [PubMed]
    [Google Scholar]
  54. Farrer AG, Bekvalac J, Redfern R, Gully N, Dobney K et al. Biological and cultural drivers of oral microbiota in Medieval and Post-Medieval London, UK. Microbiology343889 2018 [View Article]
    [Google Scholar]
  55. Mark Welch JL, Ramírez-Puebla ST, Borisy GG. Oral microbiome geography: micron-scale habitat and niche. Cell Host Microbe 2020; 28:160–168 [View Article] [PubMed]
    [Google Scholar]
  56. Proctor DM, Fukuyama JA, Loomer PM, Armitage GC, Lee SA et al. A spatial gradient of bacterial diversity in the human oral cavity shaped by salivary flow. Nat Commun 2018; 9:681 [View Article] [PubMed]
    [Google Scholar]
  57. Sedghi L, DiMassa V, Harrington A, Lynch SV, Kapila YL. The oral microbiome: role of key organisms and complex networks in oral health and disease. Periodontol 2000; 87:107–131 [View Article] [PubMed]
    [Google Scholar]
  58. Diaz PI, Chalmers NI, Rickard AH, Kong C, Milburn CL et al. Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl Environ Microbiol 2006; 72:2837–2848 [View Article] [PubMed]
    [Google Scholar]
  59. Abiko Y, Sato T, Mayanagi G, Takahashi N. Profiling of subgingival plaque biofilm microflora from periodontally healthy subjects and from subjects with periodontitis using quantitative real-time PCR. J Periodont Res 2010; 45:389–395 [View Article]
    [Google Scholar]
  60. Larsen T, Fiehn N-E. Dental biofilm infections – an update. APMIS 2017; 125:376–384 [View Article] [PubMed]
    [Google Scholar]
  61. Zijnge V, van Leeuwen MBM, Degener JE, Abbas F, Thurnheer T et al. Oral biofilm architecture on natural teeth. PLoS One 2010; 5:e9321 [View Article] [PubMed]
    [Google Scholar]
  62. Weyrich LS, Duchene S, Soubrier J, Arriola L, Llamas B et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 2017; 544:357–361 [View Article] [PubMed]
    [Google Scholar]
  63. Velsko IM, Fellows Yates JA, Aron F, Hagan RW, Frantz LAF et al. Microbial differences between dental plaque and historic dental calculus are related to oral biofilm maturation stage. Microbiome 2019; 7:102 [View Article] [PubMed]
    [Google Scholar]
  64. Lala R. A critical understanding of inclusion in oral microbiome research through the lens of racial capitalism. Community Dent Health 2024; 41:70–74 [View Article] [PubMed]
    [Google Scholar]
  65. Nath S, Handsley-Davis M, Weyrich LS, Jamieson LM. Diversity and bias in oral microbiome research: a commentary. EClinicalMedicine 2021; 36:100923 [View Article] [PubMed]
    [Google Scholar]
  66. Kamarajan P, Hayami T, Matte B, Liu Y, Danciu T et al. Nisin ZP, a Bacteriocin and food preservative, inhibits head and neck cancer tumorigenesis and prolongs survival. PLoS One 2015; 10:e0131008 [View Article] [PubMed]
    [Google Scholar]
  67. Shin JM, Gwak JW, Kamarajan P, Fenno JC, Rickard AH et al. Biomedical applications of nisin. J Appl Microbiol 2016; 120:1449–1465 [View Article] [PubMed]
    [Google Scholar]
  68. Hyde ER, Andrade F, Vaksman Z, Parthasarathy K, Jiang H et al. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis. PLoS One 2014; 9:e88645 [View Article] [PubMed]
    [Google Scholar]
  69. Edlund A, Yang Y, Yooseph S, Hall AP, Nguyen DD et al. Meta-omics uncover temporal regulation of pathways across oral microbiome genera during in vitro sugar metabolism. ISME J 2015; 9:2605–2619 [View Article] [PubMed]
    [Google Scholar]
  70. Peng X, Cheng L, You Y, Tang C, Ren B et al. Oral microbiota in human systematic diseases. Int J Oral Sci 2022; 14:14 [View Article] [PubMed]
    [Google Scholar]
  71. Almeida V de SM, Azevedo J, Leal HF, Queiroz ATL de, da Silva Filho HP et al. Bacterial diversity and prevalence of antibiotic resistance genes in the oral microbiome. PLoS One 2020; 15:e0239664 [View Article] [PubMed]
    [Google Scholar]
  72. Jepsen K, Falk W, Brune F, Fimmers R, Jepsen S et al. Prevalence and antibiotic susceptibility trends of periodontal pathogens in the subgingival microbiota of German periodontitis patients: a retrospective surveillance study. J Clin Periodontol 2021; 48:1216–1227 [View Article] [PubMed]
    [Google Scholar]
  73. Carr VR, Witherden EA, Lee S, Shoaie S, Mullany P et al. Abundance and diversity of resistomes differ between healthy human oral cavities and gut. Nat Commun 2020; 11:693 [View Article] [PubMed]
    [Google Scholar]
  74. Ahmadi H, Ebrahimi A, Ahmadi F. Antibiotic therapy in dentistry. Int J Dent 2021; 2021:6667624 [View Article] [PubMed]
    [Google Scholar]
  75. Arredondo A, Blanc V, Mor C, Nart J, León R. Tetracycline and multidrug resistance in the oral microbiota: differences between healthy subjects and patients with periodontitis in Spain. J Oral Microbiol 2020; 13:1847431 [View Article] [PubMed]
    [Google Scholar]
  76. Brooks L, Narvekar U, McDonald A, Mullany P. Prevalence of antibiotic resistance genes in the oral cavity and mobile genetic elements that disseminate antimicrobial resistance: a systematic review. Mol Oral Microbiol 2022; 37:133–153 [View Article] [PubMed]
    [Google Scholar]
  77. Morales-Dorantes V, Domínguez-Pérez RA, Pérez-Serrano RM, Solís-Sainz JC, García-Solís P et al. The distribution of eight antimicrobial resistance genes in Streptococcus oralis, Streptococcus sanguinis, and Streptococcus gordonii strains isolated from dental plaque as oral commensals. Trop Med Infect Dis 2023; 8:499 [View Article] [PubMed]
    [Google Scholar]
  78. Rôças IN, Siqueira JF. Detection of antibiotic resistance genes in samples from acute and chronic endodontic infections and after treatment. Arch Oral Biol 2013; 58:1123–1128 [View Article] [PubMed]
    [Google Scholar]
  79. Seville LA, Patterson AJ, Scott KP, Mullany P, Quail MA et al. Distribution of tetracycline and erythromycin resistance genes among human oral and fecal metagenomic DNA. Microb Drug Resist 2009; 15:159–166 [View Article] [PubMed]
    [Google Scholar]
  80. Vázquez-ramos VR, Pérez-serrano RM, García-solís P, Solís-sainz JC, Espinosa-cristóbal LF et al. Root canal microbiota as an augmented reservoir of antimicrobial resistance genes in type 2 diabetes mellitus patients. J Appl Oral Sci 2022; 30:e20220362 [View Article]
    [Google Scholar]
  81. Caselli E, Fabbri C, D’Accolti M, Soffritti I, Bassi C et al. Defining the oral microbiome by whole-genome sequencing and resistome analysis: the complexity of the healthy picture. BMC Microbiol 2020; 20:120 [View Article] [PubMed]
    [Google Scholar]
  82. Jensen A, Valdórsson O, Frimodt-Møller N, Hollingshead S, Kilian M. Commensal streptococci serve as a reservoir for β-lactam resistance genes in Streptococcus pneumoniae. Antimicrob Agents Chemother 2015; 59:3529–3540 [View Article] [PubMed]
    [Google Scholar]
  83. Segata N, Haake SK, Mannon P, Lemon KP, Waldron L et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol 2012; 13:1–18 [View Article] [PubMed]
    [Google Scholar]
  84. Olsen I, Yamazaki K. Can oral bacteria affect the microbiome of the gut?. J Oral Microbiol 2019; 11:1586422 [View Article] [PubMed]
    [Google Scholar]
  85. Schmidt TS, Hayward MR, Coelho LP, Li SS, Costea PI et al. Extensive transmission of microbes along the gastrointestinal tract. eLife 2019; 8:e42693 [View Article] [PubMed]
    [Google Scholar]
  86. Kageyama S, Sakata S, Ma J, Asakawa M, Takeshita T et al. High-resolution detection of translocation of oral bacteria to the gut. J Dent Res 2023; 102:752–758 [View Article] [PubMed]
    [Google Scholar]
  87. Rashidi A, Ebadi M, Weisdorf DJ, Costalonga M, Staley C. No evidence for colonization of oral bacteria in the distal gut in healthy adults. Proc Natl Acad Sci U S A 2021; 118:e2114152118 [View Article] [PubMed]
    [Google Scholar]
  88. Kortright KE, Chan BK, Koff JL, Turner PE. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 2019; 25:219–232 [View Article]
    [Google Scholar]
  89. Micoli F, Bagnoli F, Rappuoli R, Serruto D. The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol 2021; 19:287–302 [View Article] [PubMed]
    [Google Scholar]
  90. Zipperer A, Konnerth MC, Laux C, Berscheid A, Janek D et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 2016; 535:511–516 [View Article] [PubMed]
    [Google Scholar]
  91. Ziesemer KA, Mann AE, Sankaranarayanan K, Schroeder H, Ozga AT et al. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification. Sci Rep 2015; 5:1–20 [View Article]
    [Google Scholar]
  92. Adler CJ, Dobney K, Weyrich LS, Kaidonis J, Walker AW et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat Genet 2013; 45:450–455 [View Article] [PubMed]
    [Google Scholar]
  93. Klapper M, Hübner A, Ibrahim A, Wasmuth I, Borry M et al. Natural products from reconstructed bacterial genomes of the Middle and Upper Paleolithic. Science 2023; 380:619–624 [View Article] [PubMed]
    [Google Scholar]
  94. Lugli GA, Milani C, Mancabelli L, Turroni F, Ferrario C et al. Ancient bacteria of the Ötzi’s microbiome: a genomic tale from the Copper Age. Microbiome 2017; 5:5 [View Article] [PubMed]
    [Google Scholar]
  95. Cano RJ, Tiefenbrunner F, Ubaldi M, Del Cueto C, Luciani S et al. Sequence analysis of bacterial DNA in the colon and stomach of the Tyrolean Iceman. Am J Phys Anthropol 2000; 112:297–309 [View Article] [PubMed]
    [Google Scholar]
  96. Peyrégne S, Prüfer K. Present-day DNA contamination in ancient DNA datasets. Bioessays 2020; 42:e2000081 [View Article] [PubMed]
    [Google Scholar]
  97. Kazarina A, Gerhards G, Petersone-Gordina E, Kimsis J, Pole I et al. Analysis of the bacterial communities in ancient human bones and burial soil samples: tracing the impact of environmental bacteria. J Archaeol Sci 2019; 109:104989 [View Article]
    [Google Scholar]
  98. Stone AC, Ozga AT. Chapter 8 - ancient DNA in the study of ancient disease. In Buikstra JE. ed Ortner’s Identification of Pathological Conditions in Human Skeletal Remains, 3rd edn. San Diego: Academic Press; 2019 pp 183–210 https://www.sciencedirect.com/science/article/pii/B9780128097380000089
    [Google Scholar]
  99. Fulton TL, Shapiro B. Setting up an ancient DNA laboratory. In Ancient DNA: Methods and Protocols 2019 pp 1–13 [View Article]
    [Google Scholar]
  100. Llamas B, Valverde G, Fehren-Schmitz L, Weyrich LS, Cooper A et al. From the field to the laboratory: controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era. Sci Technol Archaeol Res 2017; 3:1–14 [View Article]
    [Google Scholar]
  101. Farrer AG, Wright SL, Skelly E, Eisenhofer R, Dobney K et al. Effectiveness of decontamination protocols when analyzing ancient DNA preserved in dental calculus. Sci Rep 2021; 11:7456 [View Article] [PubMed]
    [Google Scholar]
  102. Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC et al. Bayesian community-wide culture-independent microbial source tracking. Nat Methods 2011; 8:761–763 [View Article]
    [Google Scholar]
  103. Duitama González C, Vicedomini R, Lemane T, Rascovan N, Richard H et al. decOM: similarity-based microbial source tracking of ancient oral samples using k-mer-based methods. Microbiome 2023; 11:243 [View Article]
    [Google Scholar]
  104. Bushnell B. Bbmap: A Fast, Accurate, Splice-Aware Aligner, Lawrence Berkeley National Lab.(LBNL) Berkeley, CA (United States): 2014
    [Google Scholar]
  105. Kato I, Vasquez A, Moyerbrailean G, Land S, Djuric Z et al. Nutritional correlates of human oral microbiome. J Am Coll Nutr 2017; 36:88–98 [View Article] [PubMed]
    [Google Scholar]
  106. Millen AE, Dahhan R, Freudenheim JL, Hovey KM, Li L et al. Dietary carbohydrate intake is associated with the subgingival plaque oral microbiome abundance and diversity in a cohort of postmenopausal women. Sci Rep 2022; 12:2643 [View Article] [PubMed]
    [Google Scholar]
  107. Anderson AC, Rothballer M, Altenburger MJ, Woelber JP, Karygianni L et al. In-vivo shift of the microbiota in oral biofilm in response to frequent sucrose consumption. Sci Rep 2018; 8:14202 [View Article] [PubMed]
    [Google Scholar]
  108. Esberg A, Haworth S, Hasslöf P, Lif Holgerson P, Johansson I. Oral microbiota profile associates with sugar intake and taste preference genes. Nutrients 2020; 12:681 [View Article] [PubMed]
    [Google Scholar]
  109. Robinson J. The First Hunter-Gatherers Oxford University Press Oxford; 2014
    [Google Scholar]
  110. Panter-Brick C, Layton RH, Rowley-Conwy P. Hunter-Gatherers: An Interdisciplinary Perspective Cambridge University Press; 2001
    [Google Scholar]
  111. Forshaw R. Dental indicators of ancient dietary patterns: dental analysis in archaeology. Br Dent J 2014; 216:529–535 [View Article] [PubMed]
    [Google Scholar]
  112. Fontanals-Coll M, Soncin S, Talbot HM, von Tersch M, Gibaja JF et al. Stable isotope analyses of amino acids reveal the importance of aquatic resources to Mediterranean coastal hunter-gatherers. Proc Biol Sci 2023; 290:20221330 [View Article] [PubMed]
    [Google Scholar]
  113. Chen JC, Aldenderfer MS, Eerkens JW, Langlie BS, Viviano Llave C et al. Stable isotope chemistry reveals plant-dominant diet among early foragers on the Andean Altiplano, 9.0-6.5 cal. ka. PLoS One 2024; 19:e0296420 [View Article]
    [Google Scholar]
  114. Portero R, Cueto M, Fernández-Gómez MJ, Álvarez-Fernández E. Surf and turf. Animal resources in the human diet in Cantabrian Spain during the Mesolithic (11.5 – 7.5 Ky cal. BP). J Archaeol Sci Rep 2022; 45:103635 [View Article]
    [Google Scholar]
  115. Pickard C, Bonsall C. Post-glacial hunter-gatherer subsistence patterns in Britain: dietary reconstruction using FRUITS. Archaeol Anthropol Sci 2020; 12:142 [View Article]
    [Google Scholar]
  116. Fellows Yates JA, Velsko IM, Aron F, Posth C, Hofman CA et al. The evolution and changing ecology of the African hominid oral microbiome. Proc Natl Acad Sci U S A 2021; 118:e2021655118 [View Article] [PubMed]
    [Google Scholar]
  117. Wada GH, Eerkens JW, Shapiro B, Nichols RV. Insights into the ancient oral microbiome: survey of microbial diversity from the dental Calculus of two precontact sites by the San Francisco Bay. Proc Soc California Archaeol 2018; 32:
    [Google Scholar]
  118. Harris DR, Fuller DQ. Agriculture: definition and overview. Encyclopedia Global Archaeol 2014104–113 [View Article]
    [Google Scholar]
  119. Mummert A, Esche E, Robinson J, Armelagos GJ. Stature and robusticity during the agricultural transition: evidence from the bioarchaeological record. Econ Hum Biol 2011; 9:284–301 [View Article]
    [Google Scholar]
  120. Hunter P. Pulling teeth from history: DNA from ancient teeth can help to yield information about our ancestors’ health, diet and diseases. EMBO Rep 2014; 15:923–925 [View Article] [PubMed]
    [Google Scholar]
  121. Ottoni C, Borić D, Cheronet O, Sparacello V, Dori I et al. Tracking the transition to agriculture in Southern Europe through ancient DNA analysis of dental calculus. Proc Natl Acad Sci U S A 2021; 118:e2102116118 [View Article] [PubMed]
    [Google Scholar]
  122. Lassalle F, Spagnoletti M, Fumagalli M, Shaw L, Dyble M et al. Oral microbiomes from hunter-gatherers and traditional farmers reveal shifts in commensal balance and pathogen load linked to diet. Mol Ecol 2018; 27:182–195 [View Article] [PubMed]
    [Google Scholar]
  123. Kelly M, Ó Gráda C. Numerare Est Errare: agricultural output and food supply in England before and during the industrial revolution. J Econ Hist 2013; 73:1132–1163 [View Article]
    [Google Scholar]
  124. O’Donoghue R, Walker D, Beaumont J. Children of the abyss: investigating the association between isotopic physiological stress and skeletal pathology in London during the Industrial Revolution. Int J Paleopathol 2021; 35:61–80 [View Article] [PubMed]
    [Google Scholar]
  125. Glasse H. The Art of Cookery Made Plain and Easy: The Revolutionary 1805 Classic Courier Dover Publications; 2015
    [Google Scholar]
  126. Rando C, Hillson S, Antoine D. Changes in mandibular dimensions during the mediaeval to post-mediaeval transition in London: a possible response to decreased masticatory load. Arch Oral Biol 2014; 59:73–81 [View Article] [PubMed]
    [Google Scholar]
  127. Hudson P. The Industrial Revolution London, [England]; New York, [New York]: Hodder Arnold; 2014
    [Google Scholar]
  128. Pang L, Zhi Q, Jian W, Liu Z, Lin H. The oral microbiome impacts the link between sugar consumption and caries: a preliminary study. Nutrients 2022; 14:3693 [View Article] [PubMed]
    [Google Scholar]
  129. Gancz AS, Farrer AG, Nixon MP, Wright S, Arriola L et al. Ancient dental calculus reveals oral microbiome shifts associated with lifestyle and disease in Great Britain. Nat Microbiol 2023; 8:2315–2325 [View Article] [PubMed]
    [Google Scholar]
  130. Dagli N, Dagli R, Darwish S, Baroudi K. Oral microbial shift: factors affecting the microbiome and prevention of oral disease. J Contemp Dent Pract 2016; 17:90–96 [View Article] [PubMed]
    [Google Scholar]
  131. Corbett ME, Moore WJ. Distribution of dental caries in ancient British populations. IV. The 19th century. Caries Res 1976; 10:401–414 [View Article] [PubMed]
    [Google Scholar]
  132. World Health Organisation Global oral health status report: towards universal health coverage for oral health by 2030; 2022 https://www.who.int/publications/i/item/9789240061484
  133. Karsten JK, Heins SE, Madden GD, Sokhatskyi MP. Dental health and the transition to agriculture in Prehistoric Ukraine: a study of dental caries. Eur J Archaeol 2015; 18:562–579 [View Article]
    [Google Scholar]
  134. Flensborg G. Health and disease of hunter-gatherer groups from the eastern Pampa–Patagonia transition (Argentina) during the Late Holocene. Anthropol Sci 2016; 124:29–44 [View Article]
    [Google Scholar]
  135. Luna LH, Aranda CM. Trends in oral pathology of hunter-gatherers from Western Pampas, Argentina. Anthropol Sci 2014; 122:55–67 [View Article]
    [Google Scholar]
  136. Klaus HD, Tam ME. Oral health and the postcontact adaptive transition: a contextual reconstruction of diet in Mórrope, Peru. Am J Phys Anthropol 2010; 141:594–609 [View Article] [PubMed]
    [Google Scholar]
  137. Perrin M, Schmitt A, Ardagna Y. From early to late modern societies (late 16th - early 20th century): shifts in dental health status in two populations from southeastern France. Ann Anat - Anatomischer Anzeiger 2022; 239:151843 [View Article]
    [Google Scholar]
  138. Chigasaki O, Takeuchi Y, Aoki A, Sasaki Y, Mizutani K et al. A cross-sectional study on the periodontal status and prevalence of red complex periodontal pathogens in a Japanese population. J Oral Sci 2018; 60:293–303 [View Article] [PubMed]
    [Google Scholar]
  139. Solbiati J, Frias-Lopez J. Metatranscriptome of the oral microbiome in health and disease. J Dent Res 2018; 97:492–500 [View Article] [PubMed]
    [Google Scholar]
  140. Velsko IM, Semerau L, Inskip SA, García-Collado MI, Ziesemer K et al. Ancient dental calculus preserves signatures of biofilm succession and interindividual variation independent of dental pathology. PNAS Nexus 2022; 1:gac148 [View Article] [PubMed]
    [Google Scholar]
  141. Jensen TZT, Niemann J, Iversen KH, Fotakis AK, Gopalakrishnan S et al. A 5700 year-old human genome and oral microbiome from chewed birch pitch. Nat Commun 2019; 10:5520 [View Article] [PubMed]
    [Google Scholar]
  142. Neukamm J, Pfrengle S, Molak M, Seitz A, Francken M et al. 2000-year-old pathogen genomes reconstructed from metagenomic analysis of Egyptian mummified individuals. BMC Biol 2020; 18:108 [View Article] [PubMed]
    [Google Scholar]
  143. Bravo-Lopez M, Villa-Islas V, Rocha Arriaga C, Villaseñor-Altamirano AB, Guzmán-Solís A et al. Paleogenomic insights into the red complex bacteria Tannerella forsythia in pre-hispanic and colonial individuals from Mexico. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190580 [View Article] [PubMed]
    [Google Scholar]
  144. Casula E, Contu MP, Demontis C, Coghe F, Steri GC et al. Changes in the oral status and periodontal pathogens in a Sardinian rural community from pre-industrial to modern time. Sci Rep 2022; 12:15895 [View Article] [PubMed]
    [Google Scholar]
  145. Warinner C, Rodrigues JFM, Vyas R, Trachsel C, Shved N et al. Pathogens and host immunity in the ancient human oral cavity. Nat Genet 2014; 46:336–344 [View Article] [PubMed]
    [Google Scholar]
  146. Scorrano G, Nielsen SH, Vetro DL, Sawafuji R, Mackie M et al. Genomic ancestry, diet and microbiomes of upper palaeolithic hunter-gatherers from San Teodoro cave. Commun Biol 2022; 5:1262 [View Article]
    [Google Scholar]
  147. Fotakis AK, Denham SD, Mackie M, Orbegozo MI, Mylopotamitaki D et al. Multi-omic detection of Mycobacterium leprae in archaeological human dental calculus. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190584 [View Article] [PubMed]
    [Google Scholar]
  148. Rascovan N, Telke A, Raoult D, Rolain JM, Desnues C. Exploring divergent antibiotic resistance genes in ancient metagenomes and discovery of a novel beta-lactamase family. Environ Microbiol Rep 2016; 8:886–895 [View Article] [PubMed]
    [Google Scholar]
  149. Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED et al. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One 2012; 7:e34953 [View Article] [PubMed]
    [Google Scholar]
  150. Pawlowski AC, Wang W, Koteva K, Barton HA, McArthur AG et al. A diverse intrinsic antibiotic resistome from a cave bacterium. Nat Commun 2016; 7:13803 [View Article] [PubMed]
    [Google Scholar]
  151. Perron GG, Whyte L, Turnbaugh PJ, Goordial J, Hanage WP et al. Functional characterization of bacteria isolated from ancient arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS One 2015; 10:e0069533 [View Article] [PubMed]
    [Google Scholar]
  152. D’Costa VM, King CE, Kalan L, Morar M, Sung WWL et al. Antibiotic resistance is ancient. Nature 2011; 477:457–461 [View Article] [PubMed]
    [Google Scholar]
  153. Kashuba E, Dmitriev AA, Kamal SM, Melefors O, Griva G et al. Ancient permafrost staphylococci carry antibiotic resistance genes. Microb Ecol Health Dis 2017; 28:1345574 [View Article] [PubMed]
    [Google Scholar]
  154. Kraemer SA, Ramachandran A, Perron GG. Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms 2019; 7:180 [View Article] [PubMed]
    [Google Scholar]
  155. Relman DA, Lipsitch M. Microbiome as a tool and a target in the effort to address antimicrobial resistance. Proc Natl Acad Sci U S A 2018; 115:12902–12910 [View Article] [PubMed]
    [Google Scholar]
  156. Van Goethem MW, Pierneef R, Bezuidt OKI, Van De Peer Y, Cowan DA et al. A reservoir of “historical” antibiotic resistance genes in remote pristine Antarctic soils. Microbiome 2018; 6:40 [View Article] [PubMed]
    [Google Scholar]
  157. Baron SA, Diene SM, Rolain J-M. Human microbiomes and antibiotic resistance. Human Microbiome J 2018; 10:43–52 [View Article]
    [Google Scholar]
  158. Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol 2019; 51:72–80 [View Article] [PubMed]
    [Google Scholar]
  159. McDonald BR, Currie CR, Wisconsin MWI. Lateral gene transfer dynamics in the ancient bacterial genus Streptomyces. mBio 2017; 8:e00644-17 [View Article] [PubMed]
    [Google Scholar]
  160. Laskaris P, Tolba S, Calvo-Bado L, Wellington EM. Coevolution of antibiotic production and counter-resistance in soil bacteria. Environ Microbiol 2010; 12:783–796 [View Article] [PubMed]
    [Google Scholar]
  161. Nicault M, Tidjani A-R, Gauthier A, Dumarcay S, Gelhaye E et al. Mining the biosynthetic potential for specialized metabolism of a Streptomyces soil community. Antibiotics 2020; 9:271 [View Article] [PubMed]
    [Google Scholar]
  162. Sarmiento-Vizcaíno A, Espadas J, Martín J, Braña AF, Reyes F et al. Atmospheric precipitations, hailstone and rainwater, as a novel source of Streptomyces producing bioactive natural products. Front Microbiol 2018; 9:773 [View Article] [PubMed]
    [Google Scholar]
  163. Zhao F, Qin Y-H, Zheng X, Zhao H-W, Chai D-Y et al. Biogeography and adaptive evolution of Streptomyces strains from saline environments. Sci Rep 2016; 6:32718 [View Article] [PubMed]
    [Google Scholar]
  164. Augustine N, Wilson PA, Kerkar S, Thomas S. Arctic actinomycetes as potential inhibitors of vibrio cholerae biofilm. Curr Microbiol 2012; 64:338–342 [View Article] [PubMed]
    [Google Scholar]
  165. Encheva-Malinova M, Stoyanova M, Avramova H, Pavlova Y, Gocheva B et al. Antibacterial potential of streptomycete strains from Antarctic soils. Biotechnol Biotechnol Equip 2014; 28:721–727 [View Article] [PubMed]
    [Google Scholar]
  166. Núñez-Montero K, Lamilla C, Abanto M, Maruyama F, Jorquera MA et al. Antarctic Streptomyces fildesensis So13.3 strain as a promising source for antimicrobials discovery. Sci Rep 2019; 9:7488 [View Article] [PubMed]
    [Google Scholar]
  167. Arocha-Garza HF, Canales-Del Castillo R, Eguiarte LE, Souza V, De la Torre-Zavala S. High diversity and suggested endemicity of culturable actinobacteria in an extremely oligotrophic desert oasis. PeerJ 2017; 5:e3247 [View Article] [PubMed]
    [Google Scholar]
  168. Nguyen CC, Hugie CN, Kile ML, Navab-Daneshmand T. Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: a review. Front Environ Sci Eng 2019; 13:1–17 [View Article]
    [Google Scholar]
  169. Kang Y, Sun B, Chen Y, Lou Y, Zheng M et al. Dental plaque microbial resistomes of periodontal health and disease and their changes after scaling and root planing therapy. mSphere 2021; 6:e0016221 [View Article] [PubMed]
    [Google Scholar]
  170. He Z, Shen J, Li Q, Yang Y, Zhang D et al. Bacterial metal(loid) resistance genes (MRGs) and their variation and application in environment: A review. Sci Total Environ 2023; 871:162148 [View Article]
    [Google Scholar]
  171. Mosley S. The Chimney of the World: A History of Smoke Pollution in Victorian and Edwardian Manchester London: Routledge, Taylor & Francis Group; 2008
    [Google Scholar]
  172. Dickinson AW, Power A, Hansen MG, Brandt KK, Piliposian G et al. Heavy metal pollution and co-selection for antibiotic resistance: A microbial palaeontology approach. Environ Int 2019; 132:105117 [View Article]
    [Google Scholar]
  173. Hansson SV, Claustres A, Probst A, De Vleeschouwer F, Baron S et al. Atmospheric and terrigenous metal accumulation over 3000 years in a French mountain catchment: local vs distal influences. Anthropocene 2017; 19:45–54 [View Article]
    [Google Scholar]
  174. Hillman AL, Abbott MB, Valero-Garcés BL, Morellon M, Barreiro-Lostres F et al. Lead pollution resulting from Roman gold extraction in northwestern Spain. Holocene 2017; 27:1465–1474 [View Article]
    [Google Scholar]
  175. López-Costas O, Kylander M, Mattielli N, Álvarez-Fernández N, Pérez-Rodríguez M et al. Human bones tell the story of atmospheric mercury and lead exposure at the edge of Roman World. Sci Total Environ 2020; 710:136319 [View Article] [PubMed]
    [Google Scholar]
  176. McConnell JR, Wilson AI, Stohl A, Arienzo MM, Chellman NJ et al. Lead pollution recorded in Greenland ice indicates European emissions tracked plagues, wars, and imperial expansion during antiquity. Proc Natl Acad Sci U S A 2018; 115:5726–5731 [View Article] [PubMed]
    [Google Scholar]
  177. Silva Sánchez N. Mining and metallurgical activities in N Iberia and their link to forest evolution using environmental archives (centuries AD V to XI). Estudos do Quaternário/Quaternary Studies 2015; 12:15–26 [View Article]
    [Google Scholar]
  178. Hardy K, Radini A, Buckley S, Sarig R, Copeland L et al. Dental calculus reveals potential respiratory irritants and ingestion of essential plant-based nutrients at lower palaeolithic Qesem Cave Israel. Q Int 2016; 398:129–135 [View Article]
    [Google Scholar]
  179. Kedar Y, Barkai R. The significance of air circulation and hearth location at Paleolithic cave sites. Open Quat 2019; 5: [View Article]
    [Google Scholar]
  180. Kedar Y, Kedar G, Barkai R. The influence of smoke density on hearth location and activity areas at lower Paleolithic Lazaret Cave, France. Sci Rep 2022; 12:1469 [View Article] [PubMed]
    [Google Scholar]
  181. Lacanette D, Mindeguia J-C, Brodard A, Ferrier C, Guibert P et al. Simulation of an experimental fire in an underground limestone quarry for the study of Paleolithic fires. Int J Thermal Sci 2017; 120:1–18 [View Article]
    [Google Scholar]
  182. Eisenhofer R, Weyrich LS. Proper authentication of ancient DNA is still essential. Genes 2018; 9:122 [View Article] [PubMed]
    [Google Scholar]
  183. Santiago-Rodriguez TM, Fornaciari G, Luciani S, Toranzos GA, Marota I et al. Gut microbiome and putative resistome of Inca and Italian nobility mummies. Genes 2017; 8:310 [View Article] [PubMed]
    [Google Scholar]
  184. Brealey JC, Leitão HG, Hofstede T, Kalthoff DC, Guschanski K. The oral microbiota of wild bears in Sweden reflects the history of antibiotic use by humans. Curr Biol 2021; 31:4650–4658 [View Article] [PubMed]
    [Google Scholar]
  185. Larsen J, Raisen CL, Ba X, Sadgrove NJ, Padilla-González GF et al. Emergence of methicillin resistance predates the clinical use of antibiotics. Nature 2022; 602:135–141 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001251
Loading
/content/journal/mgen/10.1099/mgen.0.001251
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error