1887

Abstract

The advent of viral metagenomics, or viromics, has improved our knowledge and understanding of global viral diversity. High-throughput sequencing technologies enable explorations of the ecological roles, contributions to host metabolism, and the influence of viruses in various environments, including the human intestinal microbiome. However, bacterial metagenomic studies frequently have the advantage. The adoption of advanced technologies like long-read sequencing has the potential to be transformative in refining viromics and metagenomics. Here, we examined the effectiveness of long-read and hybrid sequencing by comparing Illumina short-read and Oxford Nanopore Technology (ONT) long-read sequencing technologies and different assembly strategies on recovering viral genomes from human faecal samples. Our findings showed that if a single sequencing technology is to be chosen for virome analysis, Illumina is preferable due to its superior ability to recover fully resolved viral genomes and minimise erroneous genomes. While ONT assemblies were effective in recovering viral diversity, the challenges related to input requirements and the necessity for amplification made it less ideal as a standalone solution. However, using a combined, hybrid approach enabled a more authentic representation of viral diversity to be obtained within samples.

Funding
This study was supported by the:
  • Medical Research Council (Award MR/T030062/1)
    • Principle Award Recipient: NotApplicable
  • Biotechnology and Biological Sciences Research Council (Award BB/W015706/1)
    • Principle Award Recipient: NotApplicable
  • Biotechnology and Biological Sciences Research Council (Award BB/CCG1860/1)
    • Principle Award Recipient: NotApplicable
  • Biotechnology and Biological Sciences Research Council (Award BBS/E/F/000PR13636)
    • Principle Award Recipient: NotApplicable
  • Biotechnology and Biological Sciences Research Council (Award BBS/E/F/000PR13635)
    • Principle Award Recipient: NotApplicable
  • Biotechnology and Biological Sciences Research Council (Award BBS/E/F/000PR13634)
    • Principle Award Recipient: NotApplicable
  • Biotechnology and Biological Sciences Research Council (Award BB/X011011/1)
    • Principle Award Recipient: NotApplicable
  • Biotechnology and Biological Sciences Research Council (Award BBS/E/F/000PR13633)
    • Principle Award Recipient: NotApplicable
  • Biotechnology and Biological Sciences Research Council (Award BBS/E/F/000PR13631)
    • Principle Award Recipient: NotApplicable
  • Biotechnology and Biological Sciences Research Council (Award BB/X011054/1)
    • Principle Award Recipient: NotApplicable
  • Biotechnology and Biological Sciences Research Council (Award BBS/E/F/000PR10356)
    • Principle Award Recipient: NotApplicable
  • Biotechnology and Biological Sciences Research Council (Award BBS/E/F/000PR10355)
    • Principle Award Recipient: NotApplicable
  • Biotechnology and Biological Sciences Research Council (Award BB/R012490/1)
    • Principle Award Recipient: NotApplicable
  • Biotechnology and Biological Sciences Research Council (Award BBS/E/F/731 000PR10353)
    • Principle Award Recipient: NotApplicable
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001236
2024-04-29
2024-09-17
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/4/mgen001236.html?itemId=/content/journal/mgen/10.1099/mgen.0.001236&mimeType=html&fmt=ahah

References

  1. Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM et al. Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci U S A 2002; 99:14250–14255 [View Article] [PubMed]
    [Google Scholar]
  2. Hurwitz BL, Hallam SJ, Sullivan MB. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol 2013; 14:R123 [View Article] [PubMed]
    [Google Scholar]
  3. Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM et al. Sulfur oxidation genes in diverse deep-sea viruses. Science 2014; 344:757–760 [View Article] [PubMed]
    [Google Scholar]
  4. Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 2016; 537:689–693 [View Article] [PubMed]
    [Google Scholar]
  5. Clooney AG, Sutton TDS, Shkoporov AN, Holohan RK, Daly KM et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe 2019; 26:764–778 [View Article] [PubMed]
    [Google Scholar]
  6. Shkoporov AN, Clooney AG, Sutton TDS, Ryan FJ, Daly KM et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 2019; 26:527–541 [View Article] [PubMed]
    [Google Scholar]
  7. Michniewski S, Rihtman B, Cook R, Jones MA, Wilson WH et al. A new family of “megaphages” abundant in the marine environment. ISME Commun 2021; 1:58 [View Article] [PubMed]
    [Google Scholar]
  8. Devoto AE, Santini JM, Olm MR, Anantharaman K, Munk P et al. Megaphages infect Prevotella and variants are widespread in gut microbiomes. Nat Microbiol 2019; 4:693–700 [View Article] [PubMed]
    [Google Scholar]
  9. Adriaenssens EM, Roux S, Brister JR, Karsch-Mizrachi I, Kuhn JH et al. Guidelines for public database submission of uncultivated virus genome sequences for taxonomic classification. Nat Biotechnol 2023; 41:898–902 [View Article] [PubMed]
    [Google Scholar]
  10. Simmonds P, Adams MJ, Benkő M, Breitbart M, Brister JR et al. Virus taxonomy in the age of metagenomics. Nat Rev Microbiol 2017; 15:161–168 [View Article]
    [Google Scholar]
  11. Simmonds P, Adriaenssens EM, Zerbini FM, Abrescia NGA, Aiewsakun P et al. Four principles to establish a universal virus taxonomy. PLoS Biol 2023; 21:e3001922 [View Article] [PubMed]
    [Google Scholar]
  12. Cook R, Crisci MA, Pye HV, Telatin A, Adriaenssens EM et al. Decoding huge phage diversity: a taxonomic classification of lak megaphages. Microbiology 2024 [View Article]
    [Google Scholar]
  13. Bertrand D, Shaw J, Kalathiyappan M, Ng AHQ, Kumar MS et al. Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes. Nat Biotechnol 2019; 37:937–944 [View Article] [PubMed]
    [Google Scholar]
  14. Tourancheau A, Mead EA, Zhang X-S, Fang G. Discovering multiple types of DNA methylation from bacteria and microbiome using nanopore sequencing. Nat Methods 2021; 18:491–498 [View Article] [PubMed]
    [Google Scholar]
  15. Sereika M, Kirkegaard RH, Karst SM, Michaelsen TY, Sørensen EA et al. Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing. Nat Methods 2022; 19:823–826 [View Article] [PubMed]
    [Google Scholar]
  16. Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat Methods 2020; 17:1103–1110 [View Article] [PubMed]
    [Google Scholar]
  17. Bickhart DM, Kolmogorov M, Tseng E, Portik DM, Korobeynikov A et al. Generating lineage-resolved, complete metagenome-assembled genomes from complex microbial communities. Nat Biotechnol 2022; 40:711–719 [View Article] [PubMed]
    [Google Scholar]
  18. Feng X, Cheng H, Portik D, Li H. Metagenome assembly of high-fidelity long reads with hifiasm-meta. Nat Methods 2022; 19:671–674 [View Article] [PubMed]
    [Google Scholar]
  19. Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL et al. Abundant SAR11 viruses in the ocean. Nature 2013; 494:357–360 [View Article] [PubMed]
    [Google Scholar]
  20. Martinez-Hernandez F, Fornas Ò, Lluesma Gomez M, Garcia-Heredia I, Maestre-Carballa L et al. Single-cell genomics uncover Pelagibacter as the putative host of the extremely abundant uncultured 37-F6 viral population in the ocean. ISME J 2019; 13:232–236 [View Article] [PubMed]
    [Google Scholar]
  21. Olson ND, Treangen TJ, Hill CM, Cepeda-Espinoza V, Ghurye J et al. Metagenomic assembly through the lens of validation: recent advances in assessing and improving the quality of genomes assembled from metagenomes. Brief Bioinform 2019; 20:1140–1150 [View Article] [PubMed]
    [Google Scholar]
  22. Temperton B, Giovannoni SJ. Metagenomics: microbial diversity through a scratched lens. Curr Opin Microbiol 2012; 15:605–612 [View Article] [PubMed]
    [Google Scholar]
  23. Mizuno CM, Ghai R, Rodriguez-Valera F. Evidence for metaviromic islands in marine phages. Front Microbiol 2014; 5:27 [View Article] [PubMed]
    [Google Scholar]
  24. Roux S, Emerson JB, Eloe-Fadrosh EA, Sullivan MB. Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ 2017; 5:e3817 [View Article] [PubMed]
    [Google Scholar]
  25. Cook R, Hooton S, Trivedi U, King L, Dodd CER et al. Hybrid assembly of an agricultural slurry virome reveals a diverse and stable community with the potential to alter the metabolism and virulence of veterinary pathogens. Microbiome 2021; 9:65 [View Article] [PubMed]
    [Google Scholar]
  26. Zablocki O, Michelsen M, Burris M, Solonenko N, Warwick-Dugdale J et al. VirION2: a short- and long-read sequencing and informatics workflow to study the genomic diversity of viruses in nature. PeerJ 2021; 9:e11088 [View Article] [PubMed]
    [Google Scholar]
  27. Warwick-Dugdale J, Solonenko N, Moore K, Chittick L, Gregory AC et al. Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ 2019; 7:e6800 [View Article] [PubMed]
    [Google Scholar]
  28. Overholt WA, Hölzer M, Geesink P, Diezel C, Marz M et al. Inclusion of Oxford Nanopore long reads improves all microbial and viral metagenome-assembled genomes from a complex aquifer system. Environ Microbiol 2020; 22:4000–4013 [View Article] [PubMed]
    [Google Scholar]
  29. Elek CKA, Brown TL, Le Viet T, Evans R, Baker DJ et al. A hybrid and poly-polish workflow for the complete and accurate assembly of phage genomes: a case study of ten przondoviruses. Microb Genom 2023; 9:mgen001065 [View Article] [PubMed]
    [Google Scholar]
  30. Wick RR, Judd LM, Holt KE. Assembling the perfect bacterial genome using Oxford nanopore and illumina sequencing. PLoS Comput Biol 2023; 19:e1010905 [View Article] [PubMed]
    [Google Scholar]
  31. Weirather JL, de Cesare M, Wang Y, Piazza P, Sebastiano V et al. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Res 2017; 6:100 [View Article] [PubMed]
    [Google Scholar]
  32. Watson M, Warr A. Errors in long-read assemblies can critically affect protein prediction. Nat Biotechnol 2019; 37:124–126 [View Article] [PubMed]
    [Google Scholar]
  33. Delahaye C, Nicolas J. Sequencing DNA with nanopores: troubles and biases. PLoS One 2021; 16:e0257521 [View Article] [PubMed]
    [Google Scholar]
  34. Kieft K, Zhou Z, Anantharaman K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome90 2020; 8 [View Article] [PubMed]
    [Google Scholar]
  35. Cook R, Brown N, Rihtman B, Michniewski S, Redgwell T et al. The long and short of it: benchmarking viromics using Illumina, nanopore and PacBio sequencing technologies. bioRxiv 2023; 2023: [View Article]
    [Google Scholar]
  36. Beaulaurier J, Luo E, Eppley JM, Uyl PD, Dai X et al. Assembly-free single-molecule sequencing recovers complete virus genomes from natural microbial communities. Genome Res 2020; 30:437–446 [View Article] [PubMed]
    [Google Scholar]
  37. Yilmaz S, Allgaier M, Hugenholtz P. Multiple displacement amplification compromises quantitative analysis of metagenomes. Nat Methods 2010; 7:943–944 [View Article] [PubMed]
    [Google Scholar]
  38. Marine R, McCarren C, Vorrasane V, Nasko D, Crowgey E et al. Caught in the middle with multiple displacement amplification: the myth of pooling for avoiding multiple displacement amplification bias in a metagenome. Microbiome 2014; 2:3 [View Article] [PubMed]
    [Google Scholar]
  39. Kim KH, Bae JW. Amplification methods bias metagenomic libraries of uncultured single-stranded and double-stranded DNA viruses. Appl Environ Microbiol 2011; 77:7663–7668 [View Article] [PubMed]
    [Google Scholar]
  40. Hsieh S-Y, Tariq MA, Telatin A, Ansorge R, Adriaenssens EM et al. Comparison of PCR versus PCR-Free DNA library preparation for characterising the human faecal virome. Viruses 2021; 13:2093 [View Article] [PubMed]
    [Google Scholar]
  41. Roux S, Trubl G, Goudeau D, Nath N, Couradeau E et al. Optimizing de novo genome assembly from PCR-amplified metagenomes. PeerJ 2019; 7:e6902 [View Article] [PubMed]
    [Google Scholar]
  42. De Coster W, Rademakers R. NanoPack2: population-scale evaluation of long-read sequencing data. Bioinformatics 2023; 39:btad311 [View Article] [PubMed]
    [Google Scholar]
  43. Telatin A, Fariselli P, Birolo G. SeqFu: a suite of utilities for the robust and reproducible manipulation of sequence files. Bioengineering 2021; 8:59 [View Article] [PubMed]
    [Google Scholar]
  44. Li D, Luo R, Liu C-M, Leung C-M, Ting H-F et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 2016; 102:3–11 [View Article] [PubMed]
    [Google Scholar]
  45. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article] [PubMed]
    [Google Scholar]
  46. Kieft K, Adams A, Salamzade R, Kalan L, Anantharaman K. vRhyme enables binning of viral genomes from metagenomes. Nucleic Acids Res 2022; 50:e83 [View Article] [PubMed]
    [Google Scholar]
  47. Nissen JN, Johansen J, Allesøe RL, Sønderby CK, Armenteros JJA et al. Improved metagenome binning and assembly using deep variational autoencoders. Nat Biotechnol 2021; 39:555–560 [View Article] [PubMed]
    [Google Scholar]
  48. Vijini M, Sarah P. Phables: from fragmented assemblies to high-quality bacteriophage genomes. bioRxiv 2023; 2023:
    [Google Scholar]
  49. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  50. Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nat Methods 2020; 17:155–158 [View Article] [PubMed]
    [Google Scholar]
  51. Vaser R, Šikić M. Time- and memory-efficient genome assembly with Raven. Nat Comput Sci 2021; 1:332–336 [View Article] [PubMed]
    [Google Scholar]
  52. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  53. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 2017; 27:737–746 [View Article] [PubMed]
    [Google Scholar]
  54. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 2016; 32:2103–2110 [View Article] [PubMed]
    [Google Scholar]
  55. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article] [PubMed]
    [Google Scholar]
  56. Li H. Aligning sequence reads, clone sequences and assembly Contigs with BWA-MEM. arXiv preprint 2013arXiv:13033997
    [Google Scholar]
  57. Wick RR, Holt KE. Polypolish: Short-read polishing of long-read bacterial genome assemblies. PLoS Comput Biol 2022; 18:e1009802 [View Article] [PubMed]
    [Google Scholar]
  58. Camargo AP, Roux S, Schulz F, Babinski M, Xu Y et al. Identification of mobile genetic elements with geNomad. Nat Biotechnol 2023 [View Article] [PubMed]
    [Google Scholar]
  59. Nayfach S, Camargo AP, Eloe-Fadrosh E, Roux S, Kyrpides N. CheckV: assessing the quality of metagenome-assembled viral genomes. Bioinformatics 2020 [View Article]
    [Google Scholar]
  60. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 2010; 11:1–11 [View Article] [PubMed]
    [Google Scholar]
  61. Cook R, Telatin A, Bouras G, Camargo AP, Larralde M et al. Predicting stop codon reassignment improves functional annotation of bacteriophages. bioRxiv 2023; 2023:2023 [View Article] [PubMed]
    [Google Scholar]
  62. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol132 2016; 17 [View Article] [PubMed]
    [Google Scholar]
  63. Katz LS, Griswold T, Morrison SS, Caravas JA, Zhang S et al. Mashtree: a rapid comparison of whole genome sequence files. J Open Source Softw 2019; 4: [View Article] [PubMed]
    [Google Scholar]
  64. Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM et al. Minimum information about an uncultivated virus genome (MIUViG). Nat Biotechnol 2019; 37:29–37 [View Article] [PubMed]
    [Google Scholar]
  65. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  66. Bin Jang H, Bolduc B, Zablocki O, Kuhn JH, Roux S et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol 2019; 37:632–639 [View Article] [PubMed]
    [Google Scholar]
  67. Cook R, Brown N, Redgwell T, Rihtman B, Barnes M et al. INfrastructure for a PHAge REference database: identification of large-scale biases in the current collection of cultured phage genomes. PHAGE 2021; 2:214–223 [View Article] [PubMed]
    [Google Scholar]
  68. Pandolfo M, Telatin A, Lazzari G, Adriaenssens EM, Vitulo N. MetaPhage: an automated pipeline for analyzing, annotating, and classifying bacteriophages in metagenomics sequencing data. mSystems 2022; 7:e0074122 [View Article] [PubMed]
    [Google Scholar]
  69. Gilchrist CLM, Chooi Y-H. clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 2021; 37:2473–2475 [View Article] [PubMed]
    [Google Scholar]
  70. Team RC. R: A Language and Environment for Statistical Computing Vienna: R Foundation for Statistical Computing; 2018
    [Google Scholar]
  71. Wickham H. ggplot2. In Ggplot2: Elegant Graphics for Data Analysis, 2nd edn. Cham: Springer International Publishing; 2016 [View Article]
    [Google Scholar]
  72. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13:2498–2504 [View Article] [PubMed]
    [Google Scholar]
  73. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 2017; 33:2938–2940 [View Article] [PubMed]
    [Google Scholar]
  74. Letunic I, Bork P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article] [PubMed]
    [Google Scholar]
  75. Sutton TDS, Clooney AG, Ryan FJ, Ross RP, Hill C. Choice of assembly software has a critical impact on virome characterisation. Microbiome 2019; 7:12 [View Article] [PubMed]
    [Google Scholar]
  76. Gomez-Raya-Vilanova MV, Leskinen K, Bhattacharjee A, Virta P, Rosenqvist P et al. The DNA polymerase of bacteriophage YerA41 replicates its T-modified DNA in a primer-independent manner. Nucleic Acids Res 2022; 50:3985–3997 [View Article] [PubMed]
    [Google Scholar]
  77. Rihtman B, Puxty RJ, Hapeshi A, Lee Y-J, Zhan Y et al. A new family of globally distributed lytic roseophages with unusual deoxythymidine to deoxyuridine substitution. Curr Biol 2021; 31:3199–3206 [View Article] [PubMed]
    [Google Scholar]
  78. Hutinet G, Kot W, Cui L, Hillebrand R, Balamkundu S et al. 7-Deazaguanine modifications protect phage DNA from host restriction systems. Nat Commun 2019; 10:5442 [View Article] [PubMed]
    [Google Scholar]
  79. Bryson AL, Hwang Y, Sherrill-Mix S, Wu GD, Lewis JD et al. Covalent modification of bacteriophage T4 DNA inhibits CRISPR-Cas9. mBio 2015; 6:e00648 [View Article] [PubMed]
    [Google Scholar]
  80. Flodman K, Tsai R, Xu MY, Corrêa IR, Copelas A et al. Type II restriction of bacteriophage DNA With 5hmdU-derived base modifications. Front Microbiol 2019; 10:584 [View Article] [PubMed]
    [Google Scholar]
  81. Thiaville JJ, Kellner SM, Yuan Y, Hutinet G, Thiaville PC et al. Novel genomic island modifies DNA with 7-deazaguanine derivatives. Proc Natl Acad Sci U S A 2016; 113:E1452–9 [View Article] [PubMed]
    [Google Scholar]
  82. Wick RR, Judd LM, Cerdeira LT, Hawkey J, Méric G et al. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biol 2021; 22:266 [View Article] [PubMed]
    [Google Scholar]
  83. Chen L, Banfield JF. COBRA improves the completeness and contiguity of viral genomes assembled from metagenomes. Nat Microbiol 2024; 9:737–750 [View Article] [PubMed]
    [Google Scholar]
  84. Liu L, Yang Y, Deng Y, Zhang T. Nanopore long-read-only metagenomics enables complete and high-quality genome reconstruction from mock and complex metagenomes. Microbiome 2022; 10:209 [View Article] [PubMed]
    [Google Scholar]
  85. Cuscó A, Pérez D, Viñes J, Fàbregas N, Francino O. Long-read metagenomics retrieves complete single-contig bacterial genomes from canine feces. BMC Genom 2021; 22:330 [View Article] [PubMed]
    [Google Scholar]
  86. Kim CY, Ma J, Lee I. HiFi metagenomic sequencing enables assembly of accurate and complete genomes from human gut microbiota. Nat Commun 2022; 13:6367 [View Article] [PubMed]
    [Google Scholar]
  87. Neri U, Wolf YI, Roux S, Camargo AP, Lee B et al. Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell 2022; 185:4023–4037 [View Article] [PubMed]
    [Google Scholar]
  88. Conceição-Neto N, Yinda KC, Van Ranst M, Matthijnssens J. NetoVIR: modular approach to customize sample preparation procedures for viral metagenomics. Methods Mol Biol 2018; 1838:85–95 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001236
Loading
/content/journal/mgen/10.1099/mgen.0.001236
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error