1887

Abstract

Extensive gonococcal surveillance has been performed using molecular typing at global, regional, national and local levels. The three main genotyping schemes for this pathogen, multi-locus sequence typing (MLST), multi-antigen sequence typing (NG-MAST) and sequence typing for antimicrobial resistance (NG-STAR), allow inter-laboratory and inter-study comparability and reproducibility and provide an approximation to the gonococcal population structure. With whole-genome sequencing (WGS), we obtain a substantially higher and more accurate discrimination between strains compared to previous molecular typing schemes. However, WGS remains unavailable or not affordable in many laboratories, and thus bioinformatic tools that allow the integration of data among laboratories with and without access to WGS are imperative for a joint effort to increase our understanding of global pathogen threats. Here, we present pyngoST, a command-line Python tool for fast, simultaneous and accurate sequence typing of from WGS assemblies. pyngoST integrates MLST, NG-MAST and NG-STAR, and can also designate NG-STAR clonal complexes, NG-MAST genogroups and mosaicism, facilitating multiple sequence typing from large WGS assembly collections. Exact and closest matches for existing alleles and sequence types are reported. The implementation of a fast multi-pattern searching algorithm allows pyngoST to be rapid and report results on 500 WGS assemblies in under 1 min. The mapping of typing results on a core genome tree of 2375 gonococcal genomes revealed that NG-STAR is the scheme that best represents the population structure of this pathogen, emphasizing the role of antimicrobial use and antimicrobial resistance as a driver of gonococcal evolution. This article contains data hosted by Microreact.

Funding
This study was supported by the:
  • Ministerio de Ciencia e Innovación (Award PRE2021-098199)
    • Principle Award Recipient: AndreaSanchez-Serrano
  • Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana (Award CISEJI/2022/66)
    • Principle Award Recipient: LeonorSanchez-Buso
  • Conselleria de Sanitat Universal i Salut Pública (Award CDEI-06/20-B)
    • Principle Award Recipient: LeonorSanchez-Buso
  • Ministerio de Ciencia e Innovación (Award PID2020-120113RA-I00/AEI/10.13039/501100011033)
    • Principle Award Recipient: LeonorSanchez-Buso
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001189
2024-01-30
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/1/mgen001189.html?itemId=/content/journal/mgen/10.1099/mgen.0.001189&mimeType=html&fmt=ahah

References

  1. Sánchez-Busó L, Cole MJ, Spiteri G, Day M, Jacobsson S et al. Europe-wide expansion and eradication of multidrug-resistant Neisseria gonorrhoeae lineages: a genomic surveillance study. Lancet Microbe 2022; 3:e452–e463 [View Article] [PubMed]
    [Google Scholar]
  2. Sánchez-Busó L, Yeats C, Taylor B, Goater R, Underwood A et al. A community-driven resource for genomic surveillance of Neisseria gonorrhoeae at pathogenwatch. Genome Med 2021; 13: [View Article]
    [Google Scholar]
  3. Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genom 2016; 2:e000093 [View Article] [PubMed]
    [Google Scholar]
  4. Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 1998; 95:3140–3145 [View Article]
    [Google Scholar]
  5. Urwin R, Maiden MCJ. Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol 2003; 11:479–487 [View Article] [PubMed]
    [Google Scholar]
  6. Bennett JS, Jolley KA, Sparling PF, Saunders NJ, Hart CA et al. Species status of Neisseria gonorrhoeae: evolutionary and epidemiological inferences from multilocus sequence typing. BMC Biol 2007; 5:35 [View Article] [PubMed]
    [Google Scholar]
  7. Martin IMC, Ison CA, Aanensen DM, Fenton KA, Spratt BG. Rapid sequence-based identification of gonococcal transmission clusters in a large metropolitan area. J Infect Dis 2004; 189:1497–1505 [View Article] [PubMed]
    [Google Scholar]
  8. Demczuk W, Sidhu S, Unemo M, Whiley DM, Allen VG et al. Neisseria gonorrhoeae sequence typing for antimicrobial resistance, a novel antimicrobial resistance multilocus typing scheme for tracking global dissemination of N. gonorrhoeae strains. J Clin Microbiol 2017; 55:1454–1468 [View Article] [PubMed]
    [Google Scholar]
  9. Harris SR, Cole MJ, Spiteri G, Sánchez-Busó L, Golparian D et al. Public health surveillance of multidrug-resistant clones of Neisseria gonorrhoeae in Europe: a genomic survey. Lancet Infect Dis 2018; 18:758–768 [View Article] [PubMed]
    [Google Scholar]
  10. Chisholm SA, Unemo M, Quaye N, Johansson E, Cole MJ et al. Molecular epidemiological typing within the European gonococcal antimicrobial resistance surveillance programme reveals predominance of a multidrug-resistant clone. Euro Surveill 2013; 18:20358 [PubMed]
    [Google Scholar]
  11. Riou J, Althaus CL, Allen H, Cole MJ, Grad YH et al. Projecting the development of antimicrobial resistance in Neisseria gonorrhoeae from antimicrobial surveillance data: a mathematical modelling study. BMC Infect Dis 2023; 23:252 [View Article] [PubMed]
    [Google Scholar]
  12. Golparian D, Sánchez-Busó L, Cole M, Unemo M. Neisseria gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR) clonal complexes are consistent with genomic phylogeny and provide simple nomenclature, rapid visualization and antimicrobial resistance (AMR) lineage predictions. J Antimicrob Chemother 2021; 76:940–944 [View Article] [PubMed]
    [Google Scholar]
  13. Gardy JL, Loman NJ. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat Rev Genet 2018; 19:9–20 [View Article] [PubMed]
    [Google Scholar]
  14. Loman NJ, Pallen MJ. Twenty years of bacterial genome sequencing. Nat Rev Microbiol 2015; 13:787–794 [View Article] [PubMed]
    [Google Scholar]
  15. Global Antimicrobial Resistance and Use Surveillance System (GLASS) GLASS whole-genome sequencing for surveillance of antimicrobial resistance; 2020 https://www.who.int/publications/i/item/9789240011007
  16. Seemann T. mlst. Github; 2023 https://github.com/tseemann/mlst
  17. Inouye M, Dashnow H, Raven L-A, Schultz MB, Pope BJ et al. SRST2: Rapid genomic surveillance for public health and hospital microbiology labs. Genome Med 2014; 6:90 [View Article] [PubMed]
    [Google Scholar]
  18. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom 2017; 3:e000131 [View Article] [PubMed]
    [Google Scholar]
  19. Kwong JC, Gonçalves da Silva A, Dyet K, Williamson DA, Stinear TP et al. NGMASTER: in silico multi-antigen sequence typing for Neisseria gonorrhoeae. Microb Genom 2016; 2: [View Article]
    [Google Scholar]
  20. Demczuk W, Peterson S. WGS Analysis and Detection of Molecular Markers (WADE); 2022 https://github.com/phac-nml/wade
  21. Sánchez-Busó L, Yeats CA, Taylor B, Goater RJ, Underwood A et al. A community-driven resource for genomic epidemiology and antimicrobial resistance prediction of Neisseria gonorrhoeae at pathogenwatch. Genome Med 2021; 13:61 [View Article] [PubMed]
    [Google Scholar]
  22. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [View Article] [PubMed]
    [Google Scholar]
  23. Mula W. pyahocorasick python library; 2023 https://github.com/WojciechMula/pyahocorasick
  24. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009; 25:1422–1423 [View Article] [PubMed]
    [Google Scholar]
  25. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article] [PubMed]
    [Google Scholar]
  26. de Groot C. The concurrent.Futures library. In Asynchronous Programming with Python Berkeley, CA: Apress; 2020 [View Article]
    [Google Scholar]
  27. Andrews S. FastQC: a quality control tool for high throughput sequence data; 2010 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
  28. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  29. Seeman T. snippy; 2015 https://github.com/tseemann/snippy
  30. Smit A, Hubley R, Green P. RepeatMasker Open-4.0; 2013 http://www.repeatmasker.org
  31. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:1–13 [View Article] [PubMed]
    [Google Scholar]
  32. Steenwyk JL, Buida TJ, Li Y, Shen X-X, Rokas A et al. ClipKIT: a multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biol 2020; 18:e3001007 [View Article]
    [Google Scholar]
  33. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  34. Seeman T. SNP-dists; 2018 https://github.com/tseemann/snp-dists
  35. Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics 2011; 27:592–593 [View Article] [PubMed]
    [Google Scholar]
  36. Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. Fast hierarchical Bayesian analysis of population structure. Nucleic Acids Res 2019; 47:5539–5549 [View Article] [PubMed]
    [Google Scholar]
  37. S, Josse J, Husson F. Factominer: an R package for multivariate analysis. J Stat Softw 2008; 25: [View Article]
    [Google Scholar]
  38. Kassambara A, Mundt F. Factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.7; 2020 https://CRAN.R-project.org/package=factoextra
  39. World Health Organization (WHO) Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; 2017 https://remed.org/wp-content/uploads/2017/03/lobal-priority-list-of-antibiotic-resistant-bacteria-2017.pdf
  40. Unemo M, Lahra MM, Escher M, Eremin S, Cole MJ et al. WHO global antimicrobial resistance surveillance for Neisseria gonorrhoeae 2017-18: a retrospective observational study. Lancet Microbe 2021; 2:e627–e636 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001189
Loading
/content/journal/mgen/10.1099/mgen.0.001189
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error