Skip to content
1887

Abstract

is a member of the vaginal and gastrointestinal human microbiota. Here we determined the complete genome sequence of the probiotic strain M247 combining Nanopore and Illumina technologies. The M247 genome is organized in one circular chromosome of 2 336 109 bp, with a GC content of 37.04 % and 2303 ORFs, of which 1962 could be annotated. Analysis of the M247 mobilome, which accounts for 14 % of the whole genome, revealed the presence of: (i) Tn, a novel 14 105 bp long integrative and mobilizable element (IME) containing 16 ORFs; (ii) ΦM247, a novel 42 510 bp long siphovirus prophage containing 52 ORFs; (iii) three clustered regularly interspaced short palindromic repeats (CRISPRs); and (iv) 226 insertion sequences (ISs) belonging to 14 different families. Tn has a modular organization including a mobilization module encoding FtsK homologous proteins and a relaxase, an integration/excision module coding for an integrase and an excisionase, and an adaptation module coding for a class I bacteriocin and homologous to the listeriolysin S () locus of . Genome-wide homology search analysis showed the presence of Tn-like elements in 12 out of 23 . complete public genomes. Mobilization and integration/excision modules are essentially conserved, while the adaptation module is variable since it is the target site for the integration of different ISs. Prophage ΦM247 contains genes for phage structural proteins, DNA replication and packaging, lysogenic and lytic cycles. ΦM247-like prophages are present in seven . complete genomes, with sequence variability mainly due to the integration of ISs. PCR and sequencing showed that the Tn IME excises from the M247 chromosome producing a circular form at a concentration of 4.32×10 copies per chromosome, and reconstitution of the Tn chromosomal target site occurred at 6.65×10 copies per chromosome. The ΦM247 prophage produces an excised form and a reconstituted target site at a level of 3.90×10 and 2.48×10 copies per chromosome, respectively. This study identified two novel genetic elements in . Tn represents the first example of an IME carrying a biosynthetic gene cluster for a class I bacteriocin in .

Funding
This study was supported by the:
  • MUR PNRR (Award PE00000007)
    • Principle Award Recipient: FrancescoIannelli
  • MIUR (Award 20177J5Y3P)
    • Principle Award Recipient: FrancescoIannelli
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001150
2023-12-12
2025-01-26
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/12/mgen001150.html?itemId=/content/journal/mgen/10.1099/mgen.0.001150&mimeType=html&fmt=ahah

References

  1. Petrova MI, Lievens E, Malik S, Imholz N, Lebeer S. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Front Physiol 2015; 6:81 [View Article] [PubMed]
    [Google Scholar]
  2. Walter J. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 2008; 74:4985–4996 [View Article]
    [Google Scholar]
  3. Antonio MAD, Meyn LA, Murray PJ, Busse B, Hillier SL. Vaginal colonization by probiotic Lactobacillus crispatus CTV-05 is decreased by sexual activity and endogenous lactobacilli. J Infect Dis 2009; 199:1506–1513 [View Article] [PubMed]
    [Google Scholar]
  4. De Leo V, Lazzeri E, Governini L, Cuppone AM, Colombini L et al. Vaginal colonization of women after oral administration of Lactobacillus crispatus strain NTCVAG04 from the human microbiota. Minerva Obstet Gynecol 2023; 75:432–439 [View Article] [PubMed]
    [Google Scholar]
  5. Castro-Bravo N, Wells JM, Margolles A, Ruas-Madiedo P. Interactions of surface exopolysaccharides from Bifidobacterium and Lactobacillus within the intestinal environment. Front Microbiol 2018; 9:2426 [View Article] [PubMed]
    [Google Scholar]
  6. Donnarumma G, Molinaro A, Cimini D, De Castro C, Valli V et al. Lactobacillus crispatus L1: high cell density cultivation and exopolysaccharide structure characterization to highlight potentially beneficial effects against vaginal pathogens. BMC Microbiol 2014; 14:14 [View Article] [PubMed]
    [Google Scholar]
  7. Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol 2021; 19:726–739 [View Article] [PubMed]
    [Google Scholar]
  8. Stoyancheva G, Marzotto M, Dellaglio F, Torriani S. Bacteriocin production and gene sequencing analysis from vaginal Lactobacillus strains. Arch Microbiol 2014; 196:645–653 [View Article] [PubMed]
    [Google Scholar]
  9. Ojala T, Kankainen M, Castro J, Cerca N, Edelman S et al. Comparative genomics of Lactobacillus crispatus suggests novel mechanisms for the competitive exclusion of Gardnerella vaginalis. BMC Genomics 2014; 15:1070 [View Article] [PubMed]
    [Google Scholar]
  10. Pan M, Hidalgo-Cantabrana C, Barrangou R. Host and body site-specific adaptation of Lactobacillus crispatus genomes. NAR Genom Bioinform 2020; 2:lqaa001 [View Article] [PubMed]
    [Google Scholar]
  11. van der Veer C, Hertzberger RY, Bruisten SM, Tytgat HLP, Swanenburg J et al. Comparative genomics of human Lactobacillus crispatus isolates reveals genes for glycosylation and glycogen degradation: implications for in vivo dominance of the vaginal microbiota. Microbiome 2019; 7:49 [View Article] [PubMed]
    [Google Scholar]
  12. Damelin LH, Paximadis M, Mavri-Damelin D, Birkhead M, Lewis DA et al. Identification of predominant culturable vaginal Lactobacillus species and associated bacteriophages from women with and without vaginal discharge syndrome in South Africa. J Med Microbiol 2011; 60:180–183 [View Article] [PubMed]
    [Google Scholar]
  13. Kiliç AO, Pavlova SI, Alpay S, Kiliç SS, Tao L. Comparative study of vaginal Lactobacillus phages isolated from women in the United States and Turkey: prevalence, morphology, host range, and DNA homology. Clin Diagn Lab Immunol 2001; 8:31–39 [View Article] [PubMed]
    [Google Scholar]
  14. Cesena C, Morelli L, Alander M, Siljander T, Tuomola E et al. Lactobacillus crispatus and its nonaggregating mutant in human colonization trials. J Dairy Sci 2001; 84:1001–1010 [View Article] [PubMed]
    [Google Scholar]
  15. Hynönen U, Palva A. Lactobacillus surface layer proteins: structure, function and applications. Appl Microbiol Biotechnol 2013; 97:5225–5243 [View Article] [PubMed]
    [Google Scholar]
  16. Kirjavainen PV, Ouwehand AC, Isolauri E, Salminen SJ. The ability of probiotic bacteria to bind to human intestinal mucus. FEMS Microbiol Lett 1998; 167:185–189 [View Article] [PubMed]
    [Google Scholar]
  17. Marcotte H, Ferrari S, Cesena C, Hammarström L, Morelli L et al. The aggregation-promoting factor of Lactobacillus crispatus M247 and its genetic locus. J Appl Microbiol 2004; 97:749–756 [View Article] [PubMed]
    [Google Scholar]
  18. Siciliano RA, Cacace G, Mazzeo MF, Morelli L, Elli M et al. Proteomic investigation of the aggregation phenomenon in Lactobacillus crispatus. Biochim Biophys Acta 2008; 1784:335–342 [View Article] [PubMed]
    [Google Scholar]
  19. Bertuccioli A, Cardinali M, Zonzini G, Cazzaniga M, Di Pierro F. Lactobacillus crispatus M247: characteristics of a precision probiotic instrument for gynecological and urinary well-being. Microbiol Res 2022; 13:963–971 [View Article]
    [Google Scholar]
  20. Castagliuolo I, Galeazzi F, Ferrari S, Elli M, Brun P et al. Beneficial effect of auto-aggregating Lactobacillus crispatus on experimentally induced colitis in mice. FEMS Immunol Med Microbiol 2005; 43:197–204 [View Article] [PubMed]
    [Google Scholar]
  21. Voltan S, Castagliuolo I, Elli M, Longo S, Brun P et al. Aggregating phenotype in Lactobacillus crispatus determines intestinal colonization and TLR2 and TLR4 modulation in murine colonic mucosa. Clin Vaccine Immunol 2007; 14:1138–1148 [View Article] [PubMed]
    [Google Scholar]
  22. Voltan S, Martines D, Elli M, Brun P, Longo S et al. Lactobacillus crispatus M247-derived H2O2 acts as a signal transducing molecule activating peroxisome proliferator activated receptor-gamma in the intestinal mucosa. Gastroenterology 2008; 135:1216–1227 [View Article] [PubMed]
    [Google Scholar]
  23. Pierro FD, Bertuccioli A, Cattivelli D, Soldi S, Elli M. Lactobacillus crispatus M247: A Possible Tool to Counteract CST IV 2018 pp 169–172
    [Google Scholar]
  24. DI Pierro F, Criscuolo AA, Dei Giudici A, Senatori R, Sesti F et al. Oral administration of Lactobacillus crispatus M247 to papillomavirus-infected women: results of a preliminary, uncontrolled, open trial. Minerva Obstet Gynecol 2021; 73:621–631 [View Article] [PubMed]
    [Google Scholar]
  25. Pinzauti D, Iannelli F, Pozzi G, Santoro F. DNA isolation methods for Nanopore sequencing of the Streptococcus mitis genome. Microb Genom 2022; 8:000764 [View Article] [PubMed]
    [Google Scholar]
  26. Teodori L, Colombini L, Cuppone AM, Lazzeri E, Pinzauti D et al. Complete genome sequence of Lactobacillus crispatus type strain ATCC 33820. Microbiol Resour Announc 2021; 10:e0063421 [View Article] [PubMed]
    [Google Scholar]
  27. Cuppone AM, Colombini L, Fox V, Pinzauti D, Santoro F et al. Complete genome sequence of Streptococcus pneumoniae strain Rx1, a Hex mismatch repair-deficient standard transformation recipient. Microbiol Resour Announc 2021; 10:e0079921 [View Article] [PubMed]
    [Google Scholar]
  28. Pinzauti D, De Giorgi S, Fox V, Lazzeri E, Messina G et al. Complete genome sequences of Mycobacterium chimaera strains 850 and 852, isolated from heater-cooler unit water. Microbiol Resour Announc 2022; 11:e0102121 [View Article] [PubMed]
    [Google Scholar]
  29. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article]
    [Google Scholar]
  30. Colombini L, Cuppone AM, Tirziu M, Lazzeri E, Pozzi G et al. The mobilome-enriched genome of the competence-deficient Streptococcus pneumoniae BM6001, the original host of integrative conjugative element Tn5253, is phylogenetically distinct from historical pneumococcal genomes. Microorganisms 2023; 11:1646 [View Article] [PubMed]
    [Google Scholar]
  31. Santoro F, Pastore G, Fox V, Petit M-A, Iannelli F et al. Streptococcus pyogenes Φ1207.3 is a temperate bacteriophage carrying the macrolide resistance gene pair mef(A)-msr(D) and capable of lysogenizing different streptococci. Microbiol Spectr 2023; 11:e0421122 [View Article] [PubMed]
    [Google Scholar]
  32. Santoro F, Oggioni MR, Pozzi G, Iannelli F. Nucleotide sequence and functional analysis of the tet(M)-carrying conjugative transposon Tn5251 of Streptococcus pneumoniae. FEMS Microbiol Lett 2010; 308:150–158 [View Article] [PubMed]
    [Google Scholar]
  33. Iannelli F, Santagati M, Santoro F, Oggioni MR, Stefani S et al. Nucleotide sequence of conjugative prophage Φ1207.3 (formerly Tn1207.3) carrying the mef(A)/msr(D) genes for efflux resistance to macrolides in Streptococcus pyogenes. Front Microbiol 2014; 5:687 [View Article] [PubMed]
    [Google Scholar]
  34. Iannelli F, Santoro F, Oggioni MR, Pozzi G. Nucleotide sequence analysis of integrative conjugative element Tn5253 of Streptococcus pneumoniae. Antimicrob Agents Chemother 2014; 58:1235–1239 [View Article] [PubMed]
    [Google Scholar]
  35. Iannelli F, Giunti L, Pozzi G. Direct sequencing of long polymerase chain reaction fragments. Mol Biotechnol 1998; 10:183–185 [View Article]
    [Google Scholar]
  36. Santoro F, Romeo A, Pozzi G, Iannelli F. Excision and circularization of integrative conjugative element Tn5253 of Streptococcus pneumoniae. Front Microbiol 2018; 9:1779 [View Article]
    [Google Scholar]
  37. Santoro F, Fox V, Romeo A, Lazzeri E, Pozzi G et al. Chromosomal integration of Tn5253 occurs downstream of a conserved 11-bp sequence of the rbgA gene in Streptococcus pneumoniae and in all the other known hosts of this integrative conjugative element (ICE). Mob DNA 2021; 12:25 [View Article] [PubMed]
    [Google Scholar]
  38. Deo D, Davray D, Kulkarni R. A diverse repertoire of exopolysaccharide biosynthesis gene clusters in Lactobacillus revealed by comparative analysis in 106 sequenced genomes. Microorganisms 2019; 7:444 [View Article] [PubMed]
    [Google Scholar]
  39. Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 2011; 9:467–477 [View Article] [PubMed]
    [Google Scholar]
  40. Bellanger X, Payot S, Leblond-Bourget N, Guédon G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev 2014; 38:720–760 [View Article] [PubMed]
    [Google Scholar]
  41. Cotter PD, Draper LA, Lawton EM, Daly KM, Groeger DS et al. Listeriolysin S, a novel peptide haemolysin associated with a subset of lineage I Listeria monocytogenes. PLoS Pathog 2008; 4:e1000144 [View Article] [PubMed]
    [Google Scholar]
  42. Lee S. Bacteriocins of Listeria monocytogenes and their potential as a virulence factor. Toxins 2020; 12:103 [View Article]
    [Google Scholar]
  43. Limor-Waisberg K, Carmi A, Scherz A, Pilpel Y, Furman I. Specialization versus adaptation: two strategies employed by cyanophages to enhance their translation efficiencies. Nucleic Acids Res 2011; 39:6016–6028 [View Article] [PubMed]
    [Google Scholar]
  44. Alamos P, Tello M, Bustamante P, Gutiérrez F, Shmaryahu A et al. Functionality of tRNAs encoded in a mobile genetic element from an acidophilic bacterium. RNA Biol 2018; 15:518–527 [View Article] [PubMed]
    [Google Scholar]
  45. Tisza MJ, Buck CB. A catalog of tens of thousands of viruses from human metagenomes reveals hidden associations with chronic diseases. Proc Natl Acad Sci U S A 2021; 118:e2023202118 [View Article] [PubMed]
    [Google Scholar]
  46. Ring N, Abrahams JS, Jain M, Olsen H, Preston A et al. Resolving the complex Bordetella pertussis genome using barcoded nanopore sequencing. Microb Genom 2018; 4:e000234 [View Article] [PubMed]
    [Google Scholar]
  47. Nanda AM, Thormann K, Frunzke J. Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J Bacteriol 2015; 197:410–419 [View Article] [PubMed]
    [Google Scholar]
  48. Cornuault JK, Moncaut E, Loux V, Mathieu A, Sokol H et al. The enemy from within: a prophage of Roseburia intestinalis systematically turns lytic in the mouse gut, driving bacterial adaptation by CRISPR spacer acquisition. ISME J 2020; 14:771–787 [View Article] [PubMed]
    [Google Scholar]
  49. Henrot C, Petit M-A. Signals triggering prophage induction in the gut microbiota. Mol Microbiol 2022; 118:494–502 [View Article] [PubMed]
    [Google Scholar]
  50. Koskella B, Meaden S. Understanding bacteriophage specificity in natural microbial communities. Viruses 2013; 5:806–823 [View Article] [PubMed]
    [Google Scholar]
  51. Shoemaker NB, Wang GR, Salyers AA. Multiple gene products and sequences required for excision of the mobilizable integrated Bacteroides element NBU1. J Bacteriol 2000; 182:928–936 [View Article]
    [Google Scholar]
  52. Guédon G, Libante V, Coluzzi C, Payot S, Leblond-Bourget N. The obscure world of integrative and mobilizable elements, highly widespread elements that pirate bacterial conjugative systems. Genes 2017; 8:337 [View Article] [PubMed]
    [Google Scholar]
  53. Burrus V, Pavlovic G, Decaris B, Guédon G. The ICESt1 element of Streptococcus thermophilus belongs to a large family of integrative and conjugative elements that exchange modules and change their specificity of integration. Plasmid 2002; 48:77–97 [View Article]
    [Google Scholar]
  54. Lee SW, Mitchell DA, Markley AL, Hensler ME, Gonzalez D et al. Discovery of a widely distributed toxin biosynthetic gene cluster. Proc Natl Acad Sci USA 2008; 105:5879–5884 [View Article]
    [Google Scholar]
  55. Collins FWJ, O’Connor PM, O’Sullivan O, Gómez-Sala B, Rea MC et al. Bacteriocin gene-trait matching across the complete Lactobacillus pan-genome. Sci Rep 2017; 7:3481 [View Article] [PubMed]
    [Google Scholar]
  56. Fontana F, Alessandri G, Lugli GA, Mancabelli L, Longhi G et al. Probiogenomics analysis of 97 Lactobacillus crispatus strains as a tool for the identification of promising next-generation probiotics. Microorganisms 2020; 9:73 [View Article] [PubMed]
    [Google Scholar]
  57. Mohammadzadeh R, Azadegan A, Kalani BS. Listeriolysin S may inhibit the anti-listerial properties of Lactobacillus plantarum. Microb Pathog 2019; 137:103744 [View Article] [PubMed]
    [Google Scholar]
  58. Quereda JJ, Dussurget O, Nahori M-A, Ghozlane A, Volant S et al. Bacteriocin from epidemic Listeria strains alters the host intestinal microbiota to favor infection. Proc Natl Acad Sci U S A 2016; 113:5706–5711 [View Article] [PubMed]
    [Google Scholar]
  59. Quereda JJ, Meza-Torres J, Cossart P, Pizarro-Cerdá J. Listeriolysin S: a bacteriocin from epidemic Listeria monocytogenes strains that targets the gut microbiota. Gut Microbes 2017; 8:384–391 [View Article] [PubMed]
    [Google Scholar]
  60. Meza-Torres J, Lelek M, Quereda JJ, Sachse M, Manina G et al. Listeriolysin S: a bacteriocin from Listeria monocytogenes that induces membrane permeabilization in a contact-dependent manner. Proc Natl Acad Sci U S A 2021; 118:e2108155118 [View Article] [PubMed]
    [Google Scholar]
  61. McAuliffe O, Ross RP, Hill C. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev 2001; 25:285–308 [View Article] [PubMed]
    [Google Scholar]
  62. Melby JO, Li X, Mitchell DA. Orchestration of enzymatic processing by thiazole/oxazole-modified microcin dehydrogenases. Biochemistry 2014; 53:413–422 [View Article] [PubMed]
    [Google Scholar]
  63. Brennan RG, Matthews BW. The helix-turn-helix DNA binding motif. J Biol Chem 1989; 264:1903–1906 [PubMed]
    [Google Scholar]
  64. Begg KJ, Dewar SJ, Donachie WD. A new Escherichia coli cell division gene, ftsK. J Bacteriol 1995; 177:6211–6222 [View Article] [PubMed]
    [Google Scholar]
  65. Balson DF, Shaw WV. Nucleotide sequence of the rep gene of staphylococcal plasmid pCW7. Plasmid 1990; 24:74–80 [View Article] [PubMed]
    [Google Scholar]
  66. Kwon HJ, Tirumalai R, Landy A, Ellenberger T. Flexibility in DNA recombination: structure of the lambda integrase catalytic core. Science 1997; 276:126–131 [View Article] [PubMed]
    [Google Scholar]
  67. Callanan M, Kaleta P, O’Callaghan J, O’Sullivan O, Jordan K et al. Genome sequence of Lactobacillus helveticus, an organism distinguished by selective gene loss and insertion sequence element expansion. J Bacteriol 2008; 190:727–735 [View Article] [PubMed]
    [Google Scholar]
  68. de Los Reyes-Gavilán CG, Limsowtin GK, Tailliez P, Séchaud L, Accolas JP. A Lactobacillus helveticus-specific DNA probe detects restriction fragment length polymorphisms in this species. Appl Environ Microbiol 1992; 58:3429–3432 [View Article] [PubMed]
    [Google Scholar]
  69. Garvey P, Fitzgerald GF, Hill C. Cloning and DNA sequence analysis of two abortive infection phage resistance determinants from the lactococcal plasmid pNP40. Appl Environ Microbiol 1995; 61:4321–4328 [View Article] [PubMed]
    [Google Scholar]
  70. Paetzel M, Dalbey RE, Strynadka NCJ. Crystal structure of a bacterial signal peptidase in complex with a beta-lactam inhibitor. Nature 1998; 396:186–190 [View Article] [PubMed]
    [Google Scholar]
  71. Krishna SS, Majumdar I, Grishin NV. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 2003; 31:532–550 [View Article] [PubMed]
    [Google Scholar]
  72. Sandt CH, Hopper JE, Hill CW. Activation of prophage eib genes for immunoglobulin-binding proteins by genes from the IbrAB genetic island of Escherichia coli ECOR-9. J Bacteriol 2002; 184:3640–3648 [View Article] [PubMed]
    [Google Scholar]
  73. Edgell DR. Selfish DNA: homing endonucleases find a home. Curr Biol 2009; 19:R115–7 [View Article] [PubMed]
    [Google Scholar]
  74. Schouler C, Ehrlich SD, Chopin MC. Sequence and organization of the lactococcal prolate-headed bIL67 phage genome. Microbiology 1994; 140 (Pt 11):3061–3069 [View Article] [PubMed]
    [Google Scholar]
  75. Moore SD, Prevelige PEJ. DNA packaging: a new class of molecular motors. Curr Biol 2002; 12:R96–8 [View Article] [PubMed]
    [Google Scholar]
  76. Wang J, Hartling JA, Flanagan JM. The structure of ClpP at 2.3 a resolution suggests a model for ATP-dependent proteolysis. Cell 1997; 91:447–456 [View Article] [PubMed]
    [Google Scholar]
  77. Pell LG, Cumby N, Clark TE, Tuite A, Battaile KP et al. A conserved spiral structure for highly diverged phage tail assembly chaperones. J Mol Biol 2013; 425:2436–2449 [View Article] [PubMed]
    [Google Scholar]
  78. Upton C, Buckley JT. A new family of lipolytic enzymes?. Trends Biochem Sci 1995; 20:178–179 [View Article] [PubMed]
    [Google Scholar]
  79. Gindreau E, Lonvaud-Funel A. Molecular analysis of the region encoding the lytic system from Oenococcus oeni temperate bacteriophage phi 10MC. FEMS Microbiol Lett 1999; 171:231–238 [View Article] [PubMed]
    [Google Scholar]
  80. Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP et al. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci USA 1995; 92:7090–7094 [View Article]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001150
Loading
/content/journal/mgen/10.1099/mgen.0.001150
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error