1887

Abstract

is a ubiquitous component of the human gut microbiome, but is also a common pathogen, causing around 40, 000 bloodstream infections (BSI) in the United Kingdom (UK) annually. The number of BSI has increased over the last decade in the UK, and emerging antimicrobial resistance (AMR) profiles threaten treatment options. Here, we combined clinical, epidemiological, and whole genome sequencing data with high content imaging to characterise over 300 isolates associated with BSI in a large teaching hospital in the East of England. Overall, only a limited number of sequence types (ST) were responsible for the majority of organisms causing invasive disease. The most abundant (20 % of all isolates) was ST131, of which around 90 % comprised the pandemic O25b:H4 group. ST131-O25b:H4 isolates were frequently multi-drug resistant (MDR), with a high prevalence of extended spectrum β-lactamases (ESBL) and fluoroquinolone resistance. There was no association between AMR phenotypes and the source of bacteraemia or whether the infection was healthcare-associated. Several clusters of ST131 were genetically similar, potentially suggesting a shared transmission network. However, there was no clear epidemiological associations between these cases, and they included organisms from both healthcare-associated and non-healthcare-associated origins. The majority of ST131 isolates exhibited strong binding with an anti-O25b antibody, raising the possibility of developing rapid diagnostics targeting this pathogen. In summary, our data suggest that a restricted set of MDR populations can be maintained and spread across both community and healthcare settings in this location, contributing disproportionately to invasive disease and AMR.

Funding
This study was supported by the:
  • Wellcome Trust (Award 215515/Z/19/Z)
    • Principle Award Recipient: StephenBaker
  • NIHR Cambridge Biomedical Research Centre
    • Principle Award Recipient: M.Estée Török
  • Academy of Medical Sciences
    • Principle Award Recipient: M.Estée Török
  • NIHR Cambridge Biomedical Research Centre
    • Principle Award Recipient: BenWarne
  • National Institute for Health and Care Research
    • Principle Award Recipient: WilliamL Hamilton
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001122
2023-10-30
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/10/mgen001122.html?itemId=/content/journal/mgen/10.1099/mgen.0.001122&mimeType=html&fmt=ahah

References

  1. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol 2004; 2:123–140 [View Article] [PubMed]
    [Google Scholar]
  2. GBD Antimicrobial resistance collaborators. global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the global burden of disease study 2019. Lancet 2022; 400:2221–2248
    [Google Scholar]
  3. Verway M, Brown KA, Marchand-Austin A, Diong C, Lee S et al. Prevalence and mortality associated with bloodstream organisms: a population-wide retrospective cohort study. J Clin Microbiol 2022; 60:e0242921 [View Article] [PubMed]
    [Google Scholar]
  4. UK-HSA Escherichia coli bacteraemia: annual data. National statistics; 2022 https://www.gov.uk/government/statistics/escherichia-coli-e-coli-bacteraemia-annual-data (2022 accessed 5 November 2022
  5. HM Government Tackling antimicrobial resistance 2019-2024: the UK’s five-year national action plan; 2019 https://www.gov.uk/government/publications/uk-5-year-action-plan-for-antimicrobial-resistance-2019-to-2024 accessed 24 October 2023
  6. Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 2022; 399:629–655 [View Article]
    [Google Scholar]
  7. Gladstone RA, McNally A, Pöntinen AK, Tonkin-Hill G, Lees JA et al. Emergence and dissemination of antimicrobial resistance in Escherichia coli causing bloodstream infections in Norway in 2002-17: a nationwide, longitudinal, microbial population genomic study. Lancet Microbe 2021; 2:e331–e341 [View Article] [PubMed]
    [Google Scholar]
  8. Leekitcharoenphon P, Johansson MHK, Munk P, Malorny B, Skarżyńska M et al. Genomic evolution of antimicrobial resistance in Escherichia coli. Sci Rep 2021; 11:15108 [View Article] [PubMed]
    [Google Scholar]
  9. Poirel L, Madec J-Y, Lupo A, Schink A-K, Kieffer N et al. Antimicrobial resistance in Escherichia coli. Microbiol Spectr 2018; 6: [View Article]
    [Google Scholar]
  10. Li X, Stokholm J, Brejnrod A, Vestergaard GA, Russel J et al. The infant gut resistome associates with E. coli, environmental exposures, gut microbiome maturity, and asthma-associated bacterial composition. Cell Host Microbe 2021; 29:975–987 [View Article] [PubMed]
    [Google Scholar]
  11. Brodrick HJ, Raven KE, Kallonen T, Jamrozy D, Blane B et al. Longitudinal genomic surveillance of multidrug-resistant Escherichia coli carriage in a long-term care facility in the United Kingdom. Genome Med 2017; 9:70 [View Article] [PubMed]
    [Google Scholar]
  12. Kallonen T, Brodrick HJ, Harris SR, Corander J, Brown NM et al. Systematic longitudinal survey of invasive Escherichia coli in England demonstrates a stable population structure only transiently disturbed by the emergence of ST131. Genome Res 2017; 27:1437–1449 [View Article] [PubMed]
    [Google Scholar]
  13. Lau SH, Kaufmann ME, Livermore DM, Woodford N, Willshaw GA et al. UK epidemic Escherichia coli strains A-E, with CTX-M-15 beta-lactamase, all belong to the international O25:H4-ST131 clone. J Antimicrob Chemother 2008; 62:1241–1244 [View Article] [PubMed]
    [Google Scholar]
  14. Lipworth S, Vihta K-D, Chau K, Barker L, George S et al. Ten-year longitudinal molecular epidemiology study of Escherichia coli and Klebsiella species bloodstream infections in Oxfordshire, UK. Genome Med 2021; 13:144 [View Article] [PubMed]
    [Google Scholar]
  15. Rodríguez I, Figueiredo AS, Sousa M, Aracil-Gisbert S, Fernández-de-Bobadilla MD et al. A 21-year survey of Escherichia coli from bloodstream infections (BSI) in a tertiary hospital reveals how community-hospital dynamics of B2 phylogroup clones influence local BSI rates. mSphere 2021; 6:e0086821 [View Article] [PubMed]
    [Google Scholar]
  16. Johnson JR, Urban C, Weissman SJ, Jorgensen JH, Lewis JS et al. Molecular epidemiological analysis of Escherichia coli sequence type ST131 (O25:H4) and blaCTX-M-15 among extended-spectrum-β-lactamase-producing E. coli from the United States, 2000 to 2009. Antimicrob Agents Chemother 2012; 56:2364–2370 [View Article] [PubMed]
    [Google Scholar]
  17. Nicolas-Chanoine M-H, Blanco J, Leflon-Guibout V, Demarty R, Alonso MP et al. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J Antimicrob Chemother 2008; 61:273–281 [View Article] [PubMed]
    [Google Scholar]
  18. Peirano G, Pitout JDD. Molecular epidemiology of Escherichia coli producing CTX-M beta-lactamases: the worldwide emergence of clone ST131 O25:H4. Int J Antimicrob Agents 2010; 35:316–321 [View Article] [PubMed]
    [Google Scholar]
  19. Day MJ, Hopkins KL, Wareham DW, Toleman MA, Elviss N et al. Extended-spectrum β-lactamase-producing Escherichia coli in human-derived and foodchain-derived samples from England, Wales, and Scotland: an epidemiological surveillance and typing study. Lancet Infect Dis 2019; 19:1325–1335 [View Article] [PubMed]
    [Google Scholar]
  20. Ewers C, Grobbel M, Stamm I, Kopp PA, Diehl I et al. Emergence of human pandemic O25:H4-ST131 CTX-M-15 extended-spectrum-beta-lactamase-producing Escherichia coli among companion animals. J Antimicrob Chemother 2010; 65:651–660 [View Article] [PubMed]
    [Google Scholar]
  21. Kakkanat A, Totsika M, Schaale K, Duell BL, Lo AW et al. The role of H4 flagella in Escherichia coli ST131 virulence. Sci Rep 2015; 5:16149 [View Article] [PubMed]
    [Google Scholar]
  22. Peirano G, Pitout JDD. Extended-spectrum β-lactamase-producing enterobacteriaceae: update on molecular epidemiology and treatment options. Drugs 2019; 79:1529–1541 [View Article] [PubMed]
    [Google Scholar]
  23. Pitout JDD, DeVinney R. Escherichia coli ST131: a multidrug-resistant clone primed for global domination. F1000Res 2017; 6:195 [View Article]
    [Google Scholar]
  24. Decano AG, Ludden C, Feltwell T, Judge K, Parkhill J et al. Complete assembly of Escherichia coli sequence type 131 genomes using long reads demonstrates antibiotic resistance gene variation within diverse plasmid and chromosomal contexts. mSphere 2019; 4:e00130-19 [View Article] [PubMed]
    [Google Scholar]
  25. Kowarik M, Wetter M, Haeuptle MA, Braun M, Steffen M et al. The development and characterization of an E. coli O25B bioconjugate vaccine. Glycoconj J 2021; 38:421–435 [View Article] [PubMed]
    [Google Scholar]
  26. Szijártó V, Lukasiewicz J, Gozdziewicz TK, Magyarics Z, Nagy E et al. Diagnostic potential of monoclonal antibodies specific to the unique O-antigen of multidrug-resistant epidemic Escherichia coli clone ST131-O25b:H4. Clin Vaccine Immunol 2014; 21:930–939 [View Article] [PubMed]
    [Google Scholar]
  27. Chorro L, Li Z, Chu L, Singh S, Gu J et al. Preclinical immunogenicity and efficacy of optimized O25b O-antigen glycoconjugates to prevent MDR ST131 E. coli infections. Infect Immun 2022; 90:e0002222 [View Article] [PubMed]
    [Google Scholar]
  28. UK-HSA Standards for microbiology investigations (UK SMI); 2021 https://www.gov.uk/government/collections/standards-for-microbiology-investigations-smi accessed 27 February 2023
  29. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  30. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  31. Lees JA, Kendall M, Parkhill J, Colijn C, Bentley SD et al. Evaluation of phylogenetic reconstruction methods using bacterial whole genomes: a simulation based study. Wellcome Open Res 2018; 3:33 [View Article] [PubMed]
    [Google Scholar]
  32. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article] [PubMed]
    [Google Scholar]
  33. Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genom 2016; 2:e000093 [View Article] [PubMed]
    [Google Scholar]
  34. Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. Ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 2017; 8:28–36 [View Article]
    [Google Scholar]
  35. Seemann T. tseemann/SNP-dists: pairwise SNP distance matrix from a FASTA sequence alignment; 2020 https://github.com/tseemann/snp-dists accessed 30 July 2020
  36. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article] [PubMed]
    [Google Scholar]
  37. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microbial Genomics 2017; 3:1–11 [View Article]
    [Google Scholar]
  38. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article] [PubMed]
    [Google Scholar]
  39. Inouye M, Dashnow H, Raven L-A, Schultz MB, Pope BJ et al. SRST2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Med 2014; 6:90 [View Article] [PubMed]
    [Google Scholar]
  40. Szijártó V, Guachalla LM, Visram ZC, Hartl K, Varga C et al. Bactericidal monoclonal antibodies specific to the lipopolysaccharide O antigen from multidrug-resistant Escherichia coli clone ST131-O25b:H4 elicit protection in mice. Antimicrob Agents Chemother 2015; 59:3109–3116 [View Article] [PubMed]
    [Google Scholar]
  41. Maes M, Dyson ZA, Smith SE, Goulding DA, Ludden C et al. A novel therapeutic antibody screening method using bacterial high-content imaging reveals functional antibody binding phenotypes of Escherichia coli ST131. Sci Rep 2020; 10:12414 [View Article] [PubMed]
    [Google Scholar]
  42. Johnning A, Kristiansson E, Fick J, Weijdegård B, Larsson DGJ. Resistance mutations in gyrA and parC are common in Escherichia communities of both fuoroquinolone-polluted and uncontaminated aquatic evironments. Front Microbiol 2015; 6:1355 [View Article] [PubMed]
    [Google Scholar]
  43. Varughese LR, Rajpoot M, Goyal S, Mehra R, Chhokar V et al. Analytical profiling of mutations in quinolone resistance determining region of gyrA gene among UPEC. PLoS One 2018; 13:e0190729 [View Article] [PubMed]
    [Google Scholar]
  44. Ludden C, Coll F, Gouliouris T, Restif O, Blane B et al. Defining nosocomial transmission of Escherichia coli and antimicrobial resistance genes: a genomic surveillance study. Lancet Microbe 2021; 2:e472–e480 [View Article] [PubMed]
    [Google Scholar]
  45. Johnson JR, Clermont O, Johnston B, Clabots C, Tchesnokova V et al. Rapid and specific detection, mlecular epidemiology, and experimental virulence of the O16 subgroup within Escherichia coli sequence type 131. J Clin Microbiol 2014; 52:1358–1365 [View Article]
    [Google Scholar]
  46. Clermont O, Dhanji H, Upton M, Gibreel T, Fox A et al. Rapid detection of the O25b-ST131 clone of Escherichia coli encompassing the CTX-M-15-producing strains. J Antimicrob Chemother 2009; 64:274–277 [View Article] [PubMed]
    [Google Scholar]
  47. Petty NK, Ben Zakour NL, Stanton-Cook M, Skippington E, Totsika M et al. Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci U S A 2014; 111:5694–5699 [View Article] [PubMed]
    [Google Scholar]
  48. Dolejska M, Frolkova P, Florek M, Jamborova I, Purgertova M et al. CTX-M-15-producing Escherichia coli clone B2-O25b-ST131 and Klebsiella spp. isolates in municipal wastewater treatment plant effluents. J Antimicrob Chemother 2011; 66:2784–2790 [View Article] [PubMed]
    [Google Scholar]
  49. Gomi R, Matsuda T, Matsumura Y, Yamamoto M, Tanaka M et al. Occurrence of clinically important lineages, including the sequence type 131 C1-M27 subclone, among extended-spectrum-β-lactamase-producing Escherichia coli in wastewater. Antimicrob Agents Chemother 2017; 61:e00564-17 [View Article] [PubMed]
    [Google Scholar]
  50. Finn TJ, Scriver L, Lam L, Duong M, Peirano G et al. A comprehensive account of Escherichia coli sequence type 131 in wastewater reveals an abundance of fluoroquinolone-resistant clade A strains. Appl Environ Microbiol 2020; 86:e01913-19 [View Article] [PubMed]
    [Google Scholar]
  51. Munk P, Brinch C, Møller FD, Petersen TN, Hendriksen RS et al. Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance. Nat Commun 2022; 13:7251 [View Article] [PubMed]
    [Google Scholar]
  52. Mäklin T, Thorpe HA, Pöntinen AK, Gladstone RA, Shao Y et al. Strong pathogen competition in neonatal gut colonisation. Nat Commun 2022; 13:7417 [View Article] [PubMed]
    [Google Scholar]
  53. Li D, Wyrsch ER, Elankumaran P, Dolejska M, Marenda MS et al. Genomic comparisons of Escherichia coli ST131 from Australia. Microb Genom 2021; 7:000721 [View Article] [PubMed]
    [Google Scholar]
  54. Dahbi G, Mora A, Mamani R, López C, Alonso MP et al. Molecular epidemiology and virulence of Escherichia coli O16:H5-ST131: comparison with H30 and H30-Rx subclones of O25b:H4-ST131. Int J Med Microbiol 2014; 304:1247–1257 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001122
Loading
/content/journal/mgen/10.1099/mgen.0.001122
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error