1887

Abstract

comprises a diverse group of bacteria with various lifestyles. Although best known for their nodule-based nitrogen-fixation in symbiosis with legumes, a select group of bradyrhizobia are also capable of photosynthesis. This ability seems to be rare among rhizobia, and its origin and evolution in these bacteria remain a subject of substantial debate. Therefore, our aim here was to investigate the distribution and evolution of photosynthesis in using comparative genomics and representative genomes from closely related taxa in the families and . We identified photosynthesis gene clusters (PGCs) in 25 genomes belonging to three different lineages, notably the so-called Photosynthetic, and supergroups. Also, two different PGC architectures were observed. One of these, PGC1, was present in genomes from the Photosynthetic supergroup and in three genomes from a species in the supergroup. The second cluster, PGC2, was also present in some strains from the supergroup, as well as in those from the supergroup. PGC2 was largely syntenic to the cluster found in and . Bayesian ancestral state reconstruction unambiguously showed that the ancestor of lacked a PGC and that it was acquired horizontally by various lineages. Maximum-likelihood phylogenetic analyses of individual photosynthesis genes also suggested multiple acquisitions through horizontal gene transfer, followed by vertical inheritance and gene losses within the different lineages. Overall, our findings add to the existing body of knowledge on ’s evolution and provide a meaningful basis from which to explore how these PGCs and the photosynthesis itself impact the physiology and ecology of these bacteria.

Funding
This study was supported by the:
  • DST-NRF Centre Of Excellence In Tree Health Biotechnology (Award 40945)
    • Principle Award Recipient: EmmaT. Steenkamp
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001105
2023-09-07
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/9/mgen001105.html?itemId=/content/journal/mgen/10.1099/mgen.0.001105&mimeType=html&fmt=ahah

References

  1. Avontuur JR, Wilken PM, Palmer M, Coetzee MPA, Stępkowski T et al.Complex evolutionary history of photosynthesis in Bradyrhizobium Figshare 2023 [View Article]
    [Google Scholar]
  2. Tindall BJ. The name Bradyrhizobiaceae Garrity et al. 2006 contains Nitrobacter Winogradsky 1892 (Approved Lists 1980), the nomenclatural type of the family Nitrobacteraceae Buchanan 1917 (Approved Lists 1980), is illegitimate and proposals to alter the wording of Rule 54 of the International Code of Nomenclature of Prokaryotes to clarify the fact that the family name Bradyrhizobiaceae Garrity et al. 2006 is replaced by the family name Nitrobacteraceae Buchanan 1917 (Approved Lists 1980) the only correct name. Int J Syst Evol Microbiol 2019; 69:2609–2611 [View Article] [PubMed]
    [Google Scholar]
  3. Jung GY, Nam IH, Kim SJ. Undibacter mobilis gen. nov., sp. nov. isolated from an artificial wetland in Okcheon, Korea. Int J Syst Evol Microbiol 2022; 72: [View Article]
    [Google Scholar]
  4. de Souza JAM, Alves LMC, de Mello Varani A, de Macedo Lemos EG. The family Bradyrhizobiaceae. Prokaryotes 2014135–154 [View Article]
    [Google Scholar]
  5. De Meyer SE, Coorevits A, Willems A. Tardiphaga robiniae gen. nov., sp. nov., a new genus in the family Bradyrhizobiaceae isolated from Robinia pseudoacacia in Flanders (Belgium). Syst Appl Microbiol 2012; 35:205–214 [View Article] [PubMed]
    [Google Scholar]
  6. Zeng Y, Chen X, Madsen AM, Zervas A, Nielsen TK et al. Potential rhodopsin- and bacteriochlorophyll-based dual phototrophy in a high arctic Glacier. mBio 2020; 11:e02641-20 [View Article] [PubMed]
    [Google Scholar]
  7. Hiraishi A, Ueda Y. Rhodoplanes gen. nov., a new genus of phototrophic bacteria including Rhodopseudomonas rosea as Rhodoplanes roseus comb. nov. and Rhodoplanes elegans sp. nov. Int J Syst Bacteriol 1994; 44:665–673 [View Article]
    [Google Scholar]
  8. Meyer O, Stackebrandt E, Auling G. Reclassification of ubiquinone Q-10 containing carboxidotrophic bacteria: transfer of “[Pseudomonas] carboxydovorans” OM5T to Oligotropha, gen. nov., as Oligotropha carboxidovorans, comb. nov., transfer of “[Alcaligenes] carboxydus” DSM 1086T to Carbophilus, gen. nov., as Carbophilus carboxidus, comb. nov., transfer of “[Pseudomonas] compransoris” DSM 1231T to Zavarzinia, gen. nov., as Zavarzinia compransoris, comb. nov., and amended descriptions of the new genera. Syst Appl Microbiol 1993; 16:390–395 [View Article]
    [Google Scholar]
  9. Starkenburg SR, Chain PS, Sayavedra-Soto LA, Hauser L, Land ML et al. Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255. Appl Environ Microbiol 2006; 72:2050–2063 [View Article] [PubMed]
    [Google Scholar]
  10. van Niel CB. The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bacteriol Rev 1944; 8:1–118 [View Article] [PubMed]
    [Google Scholar]
  11. Kämpfer P, Young C-C, Arun A, Shen F-T, Jäckel U et al. Pseudolabrys taiwanensis gen. nov., sp. nov., an alphaproteobacterium isolated from soil. Int J Syst Evol Microbiol 2006; 56:2469–2472 [View Article] [PubMed]
    [Google Scholar]
  12. Kim KK, Lee KC, Eom MK, Kim J-S, Kim D-S et al. Variibacter gotjawalensis gen. nov., sp. nov., isolated from soil of a lava forest. Antonie van Leeuwenhoek 2014; 105:915–924 [View Article] [PubMed]
    [Google Scholar]
  13. Tirandaz H, Dastgheib SMM, Amoozegar MA, Shavandi M, Rafael R et al. Pseudorhodoplanes sinuspersici gen. nov., sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2015; 65:4743–4748 [View Article]
    [Google Scholar]
  14. Brenner DJ, Hollis DG, Moss CW, English CK, Hall GS et al. Proposal of Afipia gen. nov., with Afipia felis sp. nov. (formerly the cat scratch disease bacillus), Afipia clevelandensis sp. nov. (formerly the Cleveland Clinic Foundation strain), Afipia broomeae sp. nov., and three unnamed genospecies. J Clin Microbiol 1991; 29:2450–2460 [View Article] [PubMed]
    [Google Scholar]
  15. Lafay B, Bullier E, Burdon JJ. Bradyrhizobia isolated from root nodules of Parasponia (Ulmaceae) do not constitute a separate coherent lineage. Int J Syst Evol Microbiol 2006; 56:1013–1018 [View Article] [PubMed]
    [Google Scholar]
  16. Moulin L, Béna G, Boivin-Masson C, Stepkowski T. Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol Phylogenet Evol 2004; 30:720–732 [View Article] [PubMed]
    [Google Scholar]
  17. Avontuur JR, Palmer M, Beukes CW, Chan WY, Coetzee MPA et al. Genome-informed Bradyrhizobium taxonomy: where to from here?. Syst Appl Microbiol 2019; 42:427–439 [View Article] [PubMed]
    [Google Scholar]
  18. Teulet A, Busset N, Fardoux J, Gully D, Chaintreuil C et al. The rhizobial type III effector ErnA confers the ability to form nodules in legumes. Proc Natl Acad Sci 2019; 116:21758–21768 [View Article] [PubMed]
    [Google Scholar]
  19. Jones FP, Clark IM, King R, Shaw LJ, Woodward MJ et al. Novel European free-living, non-diazotrophic Bradyrhizobium isolates from contrasting soils that lack nodulation and nitrogen fixation genes - a genome comparison. Sci Rep 2016; 6:1–10 [View Article] [PubMed]
    [Google Scholar]
  20. Okubo T, Tsukui T, Maita H, Okamoto S, Oshima K et al. Complete genome sequence of Bradyrhizobium sp. S23321: insights into symbiosis evolution in soil oligotrophs. Microbes Environ 2012; 27:306–315 [View Article] [PubMed]
    [Google Scholar]
  21. Tao J, Wang S, Liao T, Luo H. Evolutionary origin and ecological implication of a unique nif island in free-living Bradyrhizobium lineages. ISME J 2021; 15:3195–3206 [View Article] [PubMed]
    [Google Scholar]
  22. Mulkidjanian AY, Galperin MY. Chapter One - A time to scatter genes and A time to gather them: evolution of photosynthesis genes in bacteria. In Beatty JT. eds Advances in Botanical Research vol 66 Academic Press; 2013 pp 1–35
    [Google Scholar]
  23. Mornico D, Miché L, Béna G, Nouwen N, Verméglio A et al. Comparative genomics of aeschynomene symbionts: insights into the ecological lifestyle of nod-independent photosynthetic bradyrhizobia. Genes 2011; 3:35–61 [View Article] [PubMed]
    [Google Scholar]
  24. Bonaldi K, Gargani D, Prin Y, Fardoux J, Gully D et al. Nodulation of Aeschynomene afraspera and A. indica by photosynthetic Bradyrhizobium sp. strain ORS285: the nod-dependent versus the nod-independent symbiotic interaction. Mol Plant Microbe Interact 2011; 24:1359–1371 [View Article] [PubMed]
    [Google Scholar]
  25. Chaintreuil C, Gully D, Hervouet C, Tittabutr P, Randriambanona H et al. The evolutionary dynamics of ancient and recent polyploidy in the African semiaquatic species of the legume genus Aeschynomene. New Phytol 2016; 211:1077–1091 [View Article] [PubMed]
    [Google Scholar]
  26. Giraud E, Fleischman D. Nitrogen-fixing symbiosis between photosynthetic bacteria and legumes. Photosynth Res 2004; 82:115–130 [View Article] [PubMed]
    [Google Scholar]
  27. Ormeño-Orrillo E, Martínez-Romero E. A genomotaxonomy view of the Bradyrhizobium genus. Front Microbiol 2019; 10:1334 [View Article]
    [Google Scholar]
  28. Bromfield ESP, Cloutier S, Nguyen HDT. Description and complete genome sequence of Bradyrhizobium amphicarpaeae sp. nov., harbouring photosystem and nitrogen-fixation genes. Int J Syst Evol Microbiol 2019; 69:2841–2848 [View Article] [PubMed]
    [Google Scholar]
  29. Cloutier S, Bromfield ESP. Analysis of the complete genome sequence of the widely studied strain Bradyrhizobium betae PL7HG1T reveals the presence of photosynthesis genes and a putative plasmid. Microbiol Resour Announc 2019; 8:e01282-19 [View Article] [PubMed]
    [Google Scholar]
  30. Wasai-Hara S, Minamisawa K, Cloutier S, Bromfield ESP. Strains of Bradyrhizobium cosmicum sp. nov., isolated from contrasting habitats in Japan and Canada possess photosynthesis gene clusters with the hallmark of genomic islands. Int J Syst Evol Microbiol 2020; 70:5063–5074 [View Article] [PubMed]
    [Google Scholar]
  31. Gourion B, Bonaldi K, Giraud E. Metabolism of photosynthetic Bradyrhizobia during root and stem symbiosis with Aeschynomene Legumes. In Biological Nitrogen Fixation 2015 pp 281–292 [View Article]
    [Google Scholar]
  32. Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E et al. Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 2007; 316:1307–1312 [View Article] [PubMed]
    [Google Scholar]
  33. Giraud E, Hannibal L, Fardoux J, Verméglio A, Dreyfus B. Effect of Bradyrhizobium photosynthesis on stem nodulation of Aeschynomene sensitiva. Proc Natl Acad Sci 2000; 97:14795–14800 [View Article] [PubMed]
    [Google Scholar]
  34. de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E et al. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 2019; 69:1852–1863 [View Article] [PubMed]
    [Google Scholar]
  35. Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S et al. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 2004; 22:55–61 [View Article] [PubMed]
    [Google Scholar]
  36. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  37. Brinkmann H, Göker M, Koblížek M, Wagner-Döbler I, Petersen J. Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae. ISME J 2018; 12:1994–2010 [View Article] [PubMed]
    [Google Scholar]
  38. Nagashima S, Nagashima KV. Comparison of Photosynthesis gene clusters retrieved from total genome sequences of purple bacteria. In Advances in Botanical Research vol 66 Elsevier; 2013 pp 151–178
    [Google Scholar]
  39. Zervas A, Zeng Y, Madsen AM, Hansen LH. Genomics of aerobic photoheterotrophs in wheat phyllosphere reveals divergent evolutionary patterns of photosynthetic genes in Methylobacterium spp. Genome Biol Evol 2019; 11:2895–2908 [View Article] [PubMed]
    [Google Scholar]
  40. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:1–15 [View Article] [PubMed]
    [Google Scholar]
  41. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:1–6 [View Article] [PubMed]
    [Google Scholar]
  42. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article] [PubMed]
    [Google Scholar]
  43. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat Biotechnol 2018; 36:566–569 [View Article] [PubMed]
    [Google Scholar]
  44. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics 2011; 27:1009–1010 [View Article] [PubMed]
    [Google Scholar]
  45. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  46. Kück P, Longo GC. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front Zool 2014; 11:81 [View Article] [PubMed]
    [Google Scholar]
  47. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  48. Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci 1986; 17:57–86
    [Google Scholar]
  49. Stamatakis A. The RAxML v8. 2. X Manual Heidleberg Institute for Theoretical Studies 2016 https://cme h-its org/exelixis/resource/download/NewManual pdf
    [Google Scholar]
  50. Heritage S. MBASR: Workflow-simplified ancestral state reconstruction of discrete traits with MrBayes in the R environment. BioRxiv 2021 [View Article]
    [Google Scholar]
  51. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61:539–542 [View Article] [PubMed]
    [Google Scholar]
  52. Team RC. R Foundation for Statistical Computing; Vienna, Austria: 2020 R: A language and environment for statistical computing; 2017
    [Google Scholar]
  53. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012; 28:1647–1649 [View Article] [PubMed]
    [Google Scholar]
  54. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  55. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. Corrigendum to: IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  56. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  57. Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 2013; 30:1188–1195 [View Article] [PubMed]
    [Google Scholar]
  58. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article] [PubMed]
    [Google Scholar]
  59. Oda Y, Larimer FW, Chain PSG, Malfatti S, Shin MV et al. Multiple genome sequences reveal adaptations of a phototrophic bacterium to sediment microenvironments. Proc Natl Acad Sci 2008; 105:18543–18548 [View Article] [PubMed]
    [Google Scholar]
  60. Fleischman D, Kramer D. Photosynthetic rhizobia. Biochim Biophys Acta 1998; 1364:17–36 [View Article] [PubMed]
    [Google Scholar]
  61. Jaubert M, Zappa S, Fardoux J, Adriano J-M, Hannibal L et al. Light and redox control of photosynthesis gene expression in Bradyrhizobium: dual roles of two PpsR. J Biol Chem 2004; 279:44407–44416 [View Article] [PubMed]
    [Google Scholar]
  62. Braatsch S, Bernstein JR, Lessner F, Morgan J, Liao JC et al. Rhodopseudomonas palustris CGA009 has two functional ppsR genes, each of which encodes a repressor of photosynthesis gene expression. Biochemistry 2006; 45:14441–14451 [View Article] [PubMed]
    [Google Scholar]
  63. Li YH, Wang R, Sui XH, Wang ET, Zhang XX et al. Bradyrhizobium nanningense sp. nov., Bradyrhizobium guangzhouense sp. nov. and Bradyrhizobium zhanjiangense sp. nov., isolated from effective nodules of peanut in Southeast China. Syst Appl Microbiol 2019; 42:126002 [View Article] [PubMed]
    [Google Scholar]
  64. Miché L, Moulin L, Chaintreuil C, Contreras-Jimenez JL, Munive-Hernández J-A et al. Diversity analyses of Aeschynomene symbionts in Tropical Africa and Central America reveal that nod-independent stem nodulation is not restricted to photosynthetic bradyrhizobia. Environ Microbiol 2010; 12:2152–2164 [View Article] [PubMed]
    [Google Scholar]
  65. Okubo T, Fukushima S, Itakura M, Oshima K, Longtonglang A et al. Soil oligotrophic bacterium Agromonas oligotrophica (Bradyrhizobium oligotrophicum) is a nitrogen-fixing symbiont of Aeschynomene indica as suggested by genome analysis. Appl Environ Microbiol 2013; 79:2542–2551 [View Article] [PubMed]
    [Google Scholar]
  66. Zhang Z, Li Y, Pan X, Shao S, Liu W et al. Diversity and evolution of Aeschynomene indica nodulating Rhizobia without the nod factor synthesis genes in Shandong peninsula, China. Appl Environ Microbiol 2019 [View Article]
    [Google Scholar]
  67. Okubo T, Fukushima S, Minamisawa K. Evolution of Bradyrhizobium-Aeschynomene mutualism: living testimony of the ancient world or highly evolved state?. Plant Cell Physiol 2012; 53:2000–2007 [View Article] [PubMed]
    [Google Scholar]
  68. Paudel D, Liu F, Wang L, Crook M, Maya S et al. Isolation, characterization, and complete genome sequence of a Bradyrhizobium strain Lb8 from nodules of peanut utilizing crack entry infection. Front Microbiol 2020; 11:93 [View Article] [PubMed]
    [Google Scholar]
  69. Sharma V, Bhattacharyya S, Kumar R, Kumar A, Ibañez F. Molecular basis of root nodule symbiosis between Bradyrhizobium and ‘Crack-Entry’ legume groundnut (Arachis hypogaea L.). Plants 2020; 9:276 [View Article]
    [Google Scholar]
  70. Bao P, Li G-X, He Y-Q, Dai Y. Draft genome sequence of multidrug-resistant Bradyrhizobium sp. BL isolated from a sewage treatment plant in China. Res Sq 2019 [View Article]
    [Google Scholar]
  71. Satsuma K, Masuda M, Sato K. O-Demethylation and successive oxidative dechlorination of methoxychlor by Bradyrhizobium sp. strain 17-4, isolated from river sediment. Appl Environ Microbiol 2012; 78:5313–5319 [View Article] [PubMed]
    [Google Scholar]
  72. Bhatt AS, Freeman SS, Herrera AF, Pedamallu CS, Gevers D et al. Sequence-based discovery of Bradyrhizobium enterica in cord colitis syndrome. N Engl J Med 2013; 369:517–528 [View Article] [PubMed]
    [Google Scholar]
  73. Schneijderberg M, Schmitz L, Cheng X, Polman S, Franken C et al. A genetically and functionally diverse group of non-diazotrophic Bradyrhizobium spp. colonizes the root endophytic compartment of Arabidopsis thaliana. BMC Plant Biol 2018; 18:1–9 [View Article] [PubMed]
    [Google Scholar]
  74. Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010; 8:623–633 [View Article] [PubMed]
    [Google Scholar]
  75. Igarashi N, Harada J, Nagashima S, Matsuura K, Shimada K et al. Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. J Mol Evol 2001; 52:333–341 [View Article] [PubMed]
    [Google Scholar]
  76. Swingley WD, Blankenship RE, Raymond J. Evolutionary Relationships Among Purple Photosynthetic Bacteria and the Origin of Proteobacterial Photosynthetic Systems. In Hunter CN, Daldal F, Thurnauer MC, Beatty JT. eds The Purple Phototrophic Bacteria Dordrecht: Springer Netherlands; 2009 pp 17–29 [View Article]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001105
Loading
/content/journal/mgen/10.1099/mgen.0.001105
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error