Skip to content
1887

Abstract

Individual deletions of three genes encoding orphan DNA methyltransferases resulted in the occurrence of growth defect only in the (encoding denine ethylase A) mutant of strain ATCC 17978. Our single-molecule real-time sequencing-based methylome analysis revealed multiple AamA-mediated DNA methylation sites and proposed a potent census target motif (TTTRATTYAAA). Loss of Dam led to modulation of genome-wide gene expression, and several Dam-target sites including the promoter region of the operon ( and ) were identified through our methylome and transcriptome analyses. AamA methylation also appeared to control the expression of many genes linked to membrane functions (, ), replication () and protein synthesis ( operon) in the strain ATCC 17978. Interestingly, cellular resistance against several antibiotics and ethidium bromide through functions of efflux pumps diminished in the absence of the gene, and the complementation of gene restored the wild-type phenotypes. Other tested phenotypic traits such as outer-membrane vesicle production, biofilm formation and virulence were also affected in the mutant. Collectively, our data indicated that epigenetic regulation through AamA-mediated DNA methylation of novel target sites mostly in the regulatory regions could contribute significantly to changes in multiple phenotypic traits in ATCC 17978.

Funding
This study was supported by the:
  • National Research Foundation of Korea (Award NRF-2020M3A9H5104237)
    • Principle Award Recipient: WoojunPark
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001093
2023-08-17
2025-01-20
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/8/mgen001093.html?itemId=/content/journal/mgen/10.1099/mgen.0.001093&mimeType=html&fmt=ahah

References

  1. Srikhanta YN, Maguire TL, Stacey KJ, Grimmond SM, Jennings MP. The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes. Proc Natl Acad Sci U S A 2005; 102:5547–5551 [View Article] [PubMed]
    [Google Scholar]
  2. Cerdeño-Tárraga AM, Patrick S, Crossman LC, Blakely G, Abratt V et al. Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science 2005; 307:1463–1466 [View Article] [PubMed]
    [Google Scholar]
  3. Sanders TJ, Ullah F, Gehring AM, Burkhart BW, Vickerman RL et al. Extended archaeal histone-based chromatin structure regulates global gene expression in Thermococcus kodakarensis. Front Microbiol 2021; 12:681150 [View Article] [PubMed]
    [Google Scholar]
  4. Blaschke U, Suwono B, Zafari S, Ebersberger I, Skiebe E et al. Recombinant production of A1S_0222 from Acinetobacter baumannii ATCC 17978 and confirmation of its DNA-(adenine N6)-methyltransferase activity. Protein Expr Purif 2018; 151:78–85 [View Article] [PubMed]
    [Google Scholar]
  5. Cohen NR, Ross CA, Jain S, Shapiro RS, Gutierrez A et al. A role for the bacterial GATC methylome in antibiotic stress survival. Nat Genet 2016; 48:581–586 [View Article] [PubMed]
    [Google Scholar]
  6. Gorrell R, Kwok T. The Helicobacter pylori methylome: roles in gene regulation and virulence. Curr Top Microbiol Immunol 2017; 400:105–127 [View Article] [PubMed]
    [Google Scholar]
  7. Murphy J, Mahony J, Ainsworth S, Nauta A, van Sinderen D. Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl Environ Microbiol 2013; 79:7547–7555 [View Article] [PubMed]
    [Google Scholar]
  8. Beaulaurier J, Schadt EE, Fang G. Deciphering bacterial epigenomes using modern sequencing technologies. Nat Rev Genet 2019; 20:157–172 [View Article] [PubMed]
    [Google Scholar]
  9. Luo G-Z, Blanco MA, Greer EL, He C, Shi Y. DNA N6-methyladenine: a new epigenetic mark in eukaryotes?. Nat Rev Mol Cell Biol 2015; 16:705–710 [View Article] [PubMed]
    [Google Scholar]
  10. Casadesús J. Bacterial DNA methylation and methylomes. Adv Exp Med Biol 2016; 945:35–61 [View Article] [PubMed]
    [Google Scholar]
  11. Gonzalez D, Kozdon JB, McAdams HH, Shapiro L, Collier J. The functions of DNA methylation by CcrM in Caulobacter crescentus: a global approach. Nucleic Acids Res 2014; 42:3720–3735 [View Article] [PubMed]
    [Google Scholar]
  12. Gonzalez D, Collier J. DNA methylation by CcrM activates the transcription of two genes required for the division of Caulobacter crescentus. Mol Microbiol 2013; 88:203–218 [View Article] [PubMed]
    [Google Scholar]
  13. Mohapatra SS, Fioravanti A, Biondi EG. DNA methylation in Caulobacter and other Alphaproteobacteria during cell cycle progression. Trends Microbiol 2014; 22:528–535 [View Article] [PubMed]
    [Google Scholar]
  14. Sánchez-Romero MA, Casadesús J. The bacterial epigenome. Nat Rev Microbiol 2020; 18:7–20 [View Article] [PubMed]
    [Google Scholar]
  15. Srikhanta YN, Dowideit SJ, Edwards JL, Falsetta ML, Wu H-J et al. Phasevarions mediate random switching of gene expression in pathogenic Neisseria. PLoS Pathog 2009; 5:e1000400 [View Article] [PubMed]
    [Google Scholar]
  16. Li J, Li J-W, Feng Z, Wang J, An H et al. Epigenetic switch driven by DNA inversions dictates phase variation in Streptococcus pneumoniae. PLoS Pathog 2016; 12:e1005762 [View Article] [PubMed]
    [Google Scholar]
  17. Anjum A, Brathwaite KJ, Aidley J, Connerton PL, Cummings NJ et al. Phase variation of a type IIG restriction-modification enzyme alters site-specific methylation patterns and gene expression in Campylobacter jejuni strain NCTC11168. Nucleic Acids Res 2016; 44:4581–4594 [View Article] [PubMed]
    [Google Scholar]
  18. Beaulaurier J, Zhang X-S, Zhu S, Sebra R, Rosenbluh C et al. Single molecule-level detection and long read-based phasing of epigenetic variations in bacterial methylomes. Nat Commun 2015; 6:7438 [View Article] [PubMed]
    [Google Scholar]
  19. de Lannoy C, de Ridder D, Risse J. A sequencer coming of age: De novo genome assembly using MinION reads. F1000Res 2017; 6:1083 [View Article]
    [Google Scholar]
  20. Eid J, Fehr A, Gray J, Luong K, Lyle J et al. Real-time DNA sequencing from single polymerase molecules. Science 2009; 323:133–138 [View Article] [PubMed]
    [Google Scholar]
  21. Aya Castañeda M del R, Sarnacki SH, Noto Llana M, López Guerra AG, Giacomodonato MN et al. Dam methylation is required for efficient biofilm production in Salmonella enterica serovar Enteritidis. Int J Food Microbiol 2015; 193:15–22 [View Article] [PubMed]
    [Google Scholar]
  22. Casadesús J, Low D. Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev 2006; 70:830–856 [View Article] [PubMed]
    [Google Scholar]
  23. Broadbent SE, Davies MR, van der Woude MW. Phase variation controls expression of Salmonella lipopolysaccharide modification genes by a DNA methylation-dependent mechanism. Mol Microbiol 2010; 77:337–353 [View Article] [PubMed]
    [Google Scholar]
  24. Julio SM, Heithoff DM, Provenzano D, Klose KE, Sinsheimer RL et al. DNA adenine methylase is essential for viability and plays a role in the pathogenesis of Yersinia pseudotuberculosis and Vibrio cholerae. Infect Immun 2001; 69:7610–7615 [View Article] [PubMed]
    [Google Scholar]
  25. Balbontín R, Rowley G, Pucciarelli MG, López-Garrido J, Wormstone Y et al. DNA adenine methylation regulates virulence gene expression in Salmonella enterica serovar Typhimurium. J Bacteriol 2006; 188:8160–8168 [View Article] [PubMed]
    [Google Scholar]
  26. Xu Y, Liu S, Zhang Y, Zhang W. DNA adenine methylation is involved in persister formation in E. coli. Microbiol Res 2021; 246:126709 [View Article] [PubMed]
    [Google Scholar]
  27. Kim M, Park J, Kang M, Yang J, Park W. Gain and loss of antibiotic resistant genes in multidrug resistant bacteria: one Health perspective. J Microbiol 2021; 59:535–545 [View Article] [PubMed]
    [Google Scholar]
  28. Boral B, Unaldi Ö, Ergin A, Durmaz R, Eser ÖK et al. A prospective multicenter study on the evaluation of antimicrobial resistance and molecular epidemiology of multidrug-resistant Acinetobacter baumannii infections in intensive care units with clinical and environmental features. Ann Clin Microbiol Antimicrob 2019; 18:19 [View Article] [PubMed]
    [Google Scholar]
  29. Ibrahim S, Al-Saryi N, Al-Kadmy IMS, Aziz SN. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Mol Biol Rep 2021; 48:6987–6998 [View Article] [PubMed]
    [Google Scholar]
  30. Kuhner MK, Felsenstein J. A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol Biol Evol 1994; 11:459–468 [View Article] [PubMed]
    [Google Scholar]
  31. Retief JD. Phylogenetic analysis using PHYLIP. Methods Mol Biol 2000; 132:243–258 [View Article] [PubMed]
    [Google Scholar]
  32. Wang Y, Wang Z, Chen Y, Hua X, Yu Y et al. A highly efficient CRISPR-Cas9-based genome engineering platform in Acinetobacter baumannii to understand the H2O2-sensing mechanism of OxyR. Cell Chem Biol 2019; 26:1732–1742 [View Article] [PubMed]
    [Google Scholar]
  33. Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet 2014; 15:321–334 [View Article] [PubMed]
    [Google Scholar]
  34. Fang G, Munera D, Friedman DI, Mandlik A, Chao MC et al. Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat Biotechnol 2012; 30:1232–1239 [View Article] [PubMed]
    [Google Scholar]
  35. Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 2010; 7:461–465 [View Article] [PubMed]
    [Google Scholar]
  36. Cassiano MHA, Silva-Rocha R. Benchmarking bacterial promoter prediction tools: potentialities and limitations. mSystems 2020; 5:e00439-20 [View Article] [PubMed]
    [Google Scholar]
  37. Barakat M, Ortet P, Whitworth DE. P2RP: a web-based framework for the identification and analysis of regulatory proteins in prokaryotic genomes. BMC Genomics 2013; 14:269 [View Article] [PubMed]
    [Google Scholar]
  38. Toyofuku M, Cárcamo-Oyarce G, Yamamoto T, Eisenstein F, Hsiao C-C et al. Prophage-triggered membrane vesicle formation through peptidoglycan damage in Bacillus subtilis. Nat Commun 2017; 8:481 [View Article] [PubMed]
    [Google Scholar]
  39. Rojas ER, Billings G, Odermatt PD, Auer GK, Zhu L et al. The outer membrane is an essential load-bearing element in gram-negative bacteria. Nature 2018; 559:617–621 [View Article] [PubMed]
    [Google Scholar]
  40. Kim J-S, Li J, Barnes IHA, Baltzegar DA, Pajaniappan M et al. Role of the Campylobacter jejuni Cj1461 DNA methyltransferase in regulating virulence characteristics. J Bacteriol 2008; 190:6524–6529 [View Article] [PubMed]
    [Google Scholar]
  41. Naveen V, Hsiao CD. NrdR transcription regulation: global proteome analysis and its role in Escherichia coli viability and virulence. PLoS One 2016; 11:e0157165 [View Article] [PubMed]
    [Google Scholar]
  42. Cooper DL, Harada T, Tamazi S, Ferrazzoli AE, Lovett ST. The role of replication clamp-loader protein HolC of Escherichia coli in overcoming replication/transcription conflicts. mBio 2021; 12:e00184-21 [View Article] [PubMed]
    [Google Scholar]
  43. Yang Z, Horton JR, Zhou L, Zhang XJ, Dong A et al. Structure of the bacteriophage T4 DNA adenine methyltransferase. Nat Struct Mol Biol 2003; 10:849–855 [View Article] [PubMed]
    [Google Scholar]
  44. Anton BP, Roberts RJ. Beyond restriction modification: epigenomic roles of DNA methylation in prokaryotes. Annu Rev Microbiol 2021; 75:129–149 [View Article] [PubMed]
    [Google Scholar]
  45. Coffin SR, Reich NO. Escherichia coli DNA adenine methyltransferase: the structural basis of processive catalysis and indirect read-out. J Biol Chem 2009; 284:18390–18400 [View Article] [PubMed]
    [Google Scholar]
  46. Atack JM, Yang Y, Seib KL, Zhou Y, Jennings MP. A survey of type III restriction-modification systems reveals numerous, novel epigenetic regulators controlling phase-variable regulons; phasevarions. Nucleic Acids Res 2018; 46:3532–3542 [View Article] [PubMed]
    [Google Scholar]
  47. Park J, Kim M, Shin B, Kang M, Yang J et al. A novel decoy strategy for polymyxin resistance in Acinetobacter baumannii. eLife 2021; 10:e66988 [View Article] [PubMed]
    [Google Scholar]
  48. Kang M, Kim W, Lee J, Jung HS, Jeon CO et al. 6-bromo-2-naphthol from Silene armeria extract sensitizes Acinetobacter baumannii strains to polymyxin. Sci Rep 2022; 12:8546 [View Article] [PubMed]
    [Google Scholar]
  49. Yang J, Yun S, Park W. Blue light sensing BlsA-mediated modulation of meropenem resistance and biofilm formation in Acinetobacter baumannii. mSystems 2023; 8:e0089722 [View Article] [PubMed]
    [Google Scholar]
  50. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000; 28:33–36 [View Article] [PubMed]
    [Google Scholar]
  51. Turrini PCG, Loveland JL, Dorit RL. By any other name: heterologous replacement of the Escherichia coli RNase P protein subunit has in vivo fitness consequences. PLoS One 2012; 7:e32456 [View Article] [PubMed]
    [Google Scholar]
  52. Hou YM, Matsubara R, Takase R, Masuda I, Sulkowska JI. Trmd: a methyl transferase for tRNA methylation with m1G37. Enzymes 2017; 41:89–115 [View Article]
    [Google Scholar]
  53. Schredl AT, Perez Mora YG, Herrera A, Cuajungco MP, Murray SR. The Caulobacter crescentus ctrA P1 promoter is essential for the coordination of cell cycle events that prevent the overinitiation of DNA replication. Microbiology 2012; 158:2492–2503 [View Article] [PubMed]
    [Google Scholar]
  54. Raghunathan N, Goswami S, Leela JK, Pandiyan A, Gowrishankar J. A new role for Escherichia coli dam DNA methylase in prevention of aberrant chromosomal replication. Nucleic Acids Res 2019; 47:5698–5711 [View Article] [PubMed]
    [Google Scholar]
  55. Cheng-Guang H, Gualerzi CO. The ribosome as a switchboard for bacterial stress response. Front Microbiol 2021; 11:619038 [View Article] [PubMed]
    [Google Scholar]
  56. Harms A, Maisonneuve E, Gerdes K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 2016; 354:aaf4268 [View Article] [PubMed]
    [Google Scholar]
  57. Herrera CM, Voss BJ, Trent MS. Homeoviscous adaptation of the Acinetobacter baumannii outer membrane: alteration of lipooligosaccharide structure during cold stress. mBio 2021; 12:e0129521 [View Article] [PubMed]
    [Google Scholar]
  58. Doyle MT, Bernstein HD. Bacterial outer membrane proteins assemble via asymmetric interactions with the BamA β-barrel. Nat Commun 2019; 10:3358 [View Article] [PubMed]
    [Google Scholar]
  59. Grabowicz M, Silhavy TJ. Redefining the essential trafficking pathway for outer membrane lipoproteins. Proc Natl Acad Sci U S A 2017; 114:4769–4774 [View Article] [PubMed]
    [Google Scholar]
  60. White P, Haysom SF, Iadanza MG, Higgins AJ, Machin JM et al. The role of membrane destabilisation and protein dynamics in BAM catalysed OMP folding. Nat Commun 2021; 12:4174 [View Article] [PubMed]
    [Google Scholar]
  61. Walker SS, Black TA. Are outer-membrane targets the solution for MDR Gram-negative bacteria?. Drug Discov Today 2021; 26:2152–2158 [View Article] [PubMed]
    [Google Scholar]
  62. Bylund GO, Wipemo LC, Lundberg LA, Wikström PM. RimM and RbfA are essential for efficient processing of 16S rRNA in Escherichia coli. J Bacteriol 1998; 180:73–82 [View Article] [PubMed]
    [Google Scholar]
  63. Lövgren JM, Bylund GO, Srivastava MK, Lundberg LAC, Persson OP et al. The PRC-barrel domain of the ribosome maturation protein RimM mediates binding to ribosomal protein S19 in the 30S ribosomal subunits. RNA 2004; 10:1798–1812 [View Article] [PubMed]
    [Google Scholar]
  64. Westphal LL, Sauvey P, Champion MM, Ehrenreich IM, Finkel SE. Genomewide dam methylation in Escherichia coli during long-term stationary phase. mSystems 2016; 1:e00130-16 [View Article] [PubMed]
    [Google Scholar]
  65. Ardissone S, Redder P, Russo G, Frandi A, Fumeaux C et al. Cell cycle constraints and environmental control of local DNA hypomethylation in α-proteobacteria. PLoS Genet 2016; 12:e1006499 [View Article] [PubMed]
    [Google Scholar]
  66. Oliveira PH, Ribis JW, Garrett EM, Trzilova D, Kim A et al. Epigenomic characterization of Clostridioides difficile finds a conserved DNA methyltransferase that mediates sporulation and pathogenesis. Nat Microbiol 2020; 5:166–180 [View Article] [PubMed]
    [Google Scholar]
  67. Park DM, Akhtar MS, Ansari AZ, Landick R, Kiley PJ. The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally. PLoS Genet 2013; 9:e1003839 [View Article] [PubMed]
    [Google Scholar]
  68. O’Dwyer K, Watts JM, Biswas S, Ambrad J, Barber M et al. Characterization of Streptococcus pneumoniae TrmD, a tRNA methyltransferase essential for growth. J Bacteriol 2004; 186:2346–2354 [View Article] [PubMed]
    [Google Scholar]
  69. Lo C-C, Liao W-Y, Chou M-C, Wu Y-Y, Yeh T-H et al. Overexpression of resistance-nodulation-division efflux pump genes contributes to multidrug resistance in Aeromonas hydrophila clinical isolates. Microb Drug Resist 2022; 28:153–160 [View Article] [PubMed]
    [Google Scholar]
  70. Sheikhalizadeh V, Hasani A, Ahangarzadeh Rezaee M, Rahmati-Yamchi M, Hasani A et al. Comprehensive study to investigate the role of various aminoglycoside resistance mechanisms in clinical isolates of Acinetobacter baumannii. J Infect Chemother 2017; 23:74–79 [View Article] [PubMed]
    [Google Scholar]
  71. Sanchez-Carbonel A, Mondragón B, López-Chegne N, Peña-Tuesta I, Huayan-Dávila G et al. The effect of the efflux pump inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP) on the susceptibility to imipenem and cefepime in clinical strains of Acinetobacter baumannii. PLoS One 2021; 16:e0259915 [View Article] [PubMed]
    [Google Scholar]
  72. Avila-Calderón ED, Ruiz-Palma MDS, Aguilera-Arreola MG, Velázquez-Guadarrama N, Ruiz EA et al. Outer membrane vesicles of gram-negative bacteria: an outlook on biogenesis. Front Microbiol 2021; 12:557902 [View Article] [PubMed]
    [Google Scholar]
  73. Doberenz S, Eckweiler D, Reichert O, Jensen V, Bunk B et al. Identification of a Pseudomonas aeruginosa PAO1 DNA methyltransferase, its targets, and physiological roles. mBio 2017; 8:e02312-16 [View Article] [PubMed]
    [Google Scholar]
  74. Wu X, Cao B, Aquino P, Chiu T-P, Chen C et al. Epigenetic competition reveals density-dependent regulation and target site plasticity of phosphorothioate epigenetics in bacteria. Proc Natl Acad Sci 2020; 117:14322–14330 [View Article] [PubMed]
    [Google Scholar]
  75. Mou KT, Muppirala UK, Severin AJ, Clark TA, Boitano M et al. A comparative analysis of methylome profiles of Campylobacter jejuni sheep abortion isolate and gastroenteric strains using PacBio data. Front Microbiol 2015; 5:782 [View Article] [PubMed]
    [Google Scholar]
  76. Fomenkov A, Vincze T, Degtyarev SK, Roberts RJ. Complete genome sequence and methylome analysis of Acinetobacter calcoaceticus 65. Genome Announc 2017; 5:e00060-17 [View Article] [PubMed]
    [Google Scholar]
  77. Payelleville A, Legrand L, Ogier J-C, Roques C, Roulet A et al. The complete methylome of an entomopathogenic bacterium reveals the existence of loci with unmethylated adenines. Sci Rep 2018; 8:12091 [View Article] [PubMed]
    [Google Scholar]
  78. Fujikawa N, Kurumizaka H, Nureki O, Tanaka Y, Yamazoe M et al. Structural and biochemical analyses of hemimethylated DNA binding by the SeqA protein. Nucleic Acids Res 2004; 32:82–92 [View Article] [PubMed]
    [Google Scholar]
  79. Collier J, McAdams HH, Shapiro L. A DNA methylation ratchet governs progression through A bacterial cell cycle. Proc Natl Acad Sci 2007; 104:17111–17116 [View Article] [PubMed]
    [Google Scholar]
  80. Peterson SN, Reich NO. Competitive Lrp and Dam assembly at the pap regulatory region: implications for mechanisms of epigenetic regulation. J Mol Biol 2008; 383:92–105 [View Article] [PubMed]
    [Google Scholar]
  81. Fioravanti A, Fumeaux C, Mohapatra SS, Bompard C, Brilli M et al. DNA binding of the cell cycle transcriptional regulator GcrA depends on N6-adenosine methylation in Caulobacter crescentus and other Alphaproteobacteria. PLoS Genet 2013; 9:e1003541 [View Article] [PubMed]
    [Google Scholar]
  82. Han S, Liu J, Li M, Zhang Y, Duan X et al. DNA methyltransferase regulates nitric oxide homeostasis and virulence in a chronically adapted Pseudomonas aeruginosa strain. mSystems 2022; 7:e0043422 [View Article] [PubMed]
    [Google Scholar]
  83. Björk GR, Jacobsson K, Nilsson K, Johansson MJ, Byström AS et al. A primordial tRNA modification required for the evolution of life?. EMBO J 2001; 20:231–239 [View Article] [PubMed]
    [Google Scholar]
  84. Suzuki S, Tatsuguchi A, Matsumoto E, Kawazoe M, Kaminishi T et al. Structural characterization of the ribosome maturation protein, RimM. J Bacteriol 2007; 189:6397–6406 [View Article] [PubMed]
    [Google Scholar]
  85. Masuda I, Matsubara R, Christian T, Rojas ER, Yadavalli SS et al. tRNA methylation is a global determinant of bacterial multi-drug resistance. Cell Syst 2019; 8:302–314 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001093
Loading
/content/journal/mgen/10.1099/mgen.0.001093
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error