1887

Abstract

Extraintestinal pathogenic (ExPEC) are the most frequent cause of urinary tract infections (UTIs) globally. Most studies of clinical isolates are selected based on their antimicrobial resistance (AMR) phenotypes; however, this selection bias may not provide an accurate portrayal of which sequence types (STs) cause the most disease. Here, whole genome sequencing (WGS) was performed on 320 isolates from urine samples sourced from a regional hospital in Australia in 2006. Most isolates (91%) were sourced from patients with UTIs and were not selected based on any AMR phenotypes. No significant differences were observed in AMR and virulence genes profiles across age sex, and uro-clinical syndromes. While 88 STs were identified, ST73, ST95, ST127 and ST131 dominated. F virulence plasmids carrying (126/231; 55%) virulence genes were a feature of this collection. These + plasmids were split into two categories: pUTI89-like (F29:A-:B10 and/or >95 % identity to pUTI89) (=73) and non-pUTI89-like (=53). Compared to all other plasmid replicons, isolates with pUTI89-like plasmids carried fewer antibiotic resistance genes (ARGs), whilst isolates with +/non-pUTI89 plasmids had a significantly higher load of ARGs and class 1 integrons. F plasmids were not detected in 89 genomes, predominantly ST73. Our phylogenomic analyses identified closely related isolates from the same patient associated with different pathologies and evidence of strain-sharing events involving isolates sourced from companion and wild animals.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001068
2023-07-20
2024-07-13
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/7/mgen001068.html?itemId=/content/journal/mgen/10.1099/mgen.0.001068&mimeType=html&fmt=ahah

References

  1. Abbo LM, Hooton TM. Antimicrobial stewardship and urinary tract infections. Antibiotics 2014; 3:174–192 [View Article] [PubMed]
    [Google Scholar]
  2. AURA Third Australian report on antimicrobial use and resistance in human health.: Australian Commission on Safety and Quality in Health Care (ACSQHC); 2019 https://www.safetyandquality.gov.au/sites/default/files/2019-06/AURA-2019-Report.pdf
  3. McCall B. Artificial intelligence bridges the complexity of intractable medical problems. Lancet Digit Health 2021; 3:e8–e9 [View Article]
    [Google Scholar]
  4. Poolman JT, Wacker M. Extraintestinal pathogenic Escherichia coli, a common human pathogen: challenges for vaccine development and progress in the field. J Infect Dis 2016; 213:6–13 [View Article] [PubMed]
    [Google Scholar]
  5. Manges AR. Escherichia coli causing bloodstream and other extraintestinal infections: tracking the next pandemic. Lancet Infect Dis 2019; 19:1269–1270 [View Article] [PubMed]
    [Google Scholar]
  6. Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD et al. Global Extraintestinal Pathogenic Escherichia coli (ExPEC) lineages. Clin Microbiol Rev 2019; 32:e00135-18 [View Article] [PubMed]
    [Google Scholar]
  7. Zilberberg MD, Shorr AF. Secular trends in gram-negative resistance among urinary tract infection hospitalizations in the United States, 2000-2009. Infect Control Hosp Epidemiol 2013; 34:940–946 [View Article] [PubMed]
    [Google Scholar]
  8. Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother 2017; 72:2145–2155 [View Article] [PubMed]
    [Google Scholar]
  9. Wesolek JL, Wu JY, Smalley CM, Wang L, Campbell MJ. Risk factors for trimethoprim and sulfamethoxazole-resistant Escherichia coli in ED patients with urinary tract infections. Am J Emerg Med 2022; 56:178–182 [View Article] [PubMed]
    [Google Scholar]
  10. Carmona-Cartaya Y, Hidalgo-Benito M, Borges-Mateus LM, Pereda-Novales N, González-Molina MK et al. Community-acquired uropathogenic Escherichia coli, antimicrobial susceptibility, and extended-spectrum beta-lactamase detection. MEDICC Rev 2022; 24:20–25 [View Article] [PubMed]
    [Google Scholar]
  11. García-Meniño I, Lumbreras P, Lestón L, Álvarez-Álvarez M, García V et al. Occurrence and genomic characterization of clone ST1193 clonotype 14-64 in uncomplicated urinary tract infections caused by Escherichia coli in Spain. Microbiol Spectr 2022; 10:e0004122 [View Article] [PubMed]
    [Google Scholar]
  12. Bean DC, Livermore DM, Papa I, Hall LMC. Resistance among Escherichia coli to sulphonamides and other antimicrobials now little used in man. J Antimicrob Chemother 2005; 56:962–964 [View Article]
    [Google Scholar]
  13. Tano ZN, Kobayashi RK, Candido EP, Dias JB, Perugini LF et al. Susceptibility to first choice antimicrobial treatment for urinary tract infections to Escherichia coli isolates from women urine samples in community South Brazil. Braz J Infect Dis 2022; 26:102366 [View Article] [PubMed]
    [Google Scholar]
  14. Li D, Reid CJ, Kudinha T, Jarocki VM, Djordjevic SP. Genomic analysis of trimethoprim-resistant extraintestinal pathogenic Escherichia coli and recurrent urinary tract infections. Microb Genom 2020; 6:mgen000475 [View Article] [PubMed]
    [Google Scholar]
  15. Manges AR, Johnson JR. Reservoirs of extraintestinal pathogenic Escherichia coli. Microbiol Spectr 2015; 3: [View Article] [PubMed]
    [Google Scholar]
  16. Nesporova K, Wyrsch ER, Valcek A, Bitar I, Chaw K et al. Escherichia coli sequence type 457 is an emerging extended-spectrum-β-lactam-resistant lineage with reservoirs in wildlife and food-producing animals. Antimicrob Agents Chemother 2020; 65:e01118–20 [View Article]
    [Google Scholar]
  17. Tarabai H, Wyrsch ER, Bitar I, Dolejska M, Djordjevic SP. Epidemic HI2 plasmids mobilising the carbapenemase gene blaIMP-4 in Australian clinical samples identified in multiple sublineages of Escherichia coli ST216 colonising silver gulls. Microorganisms 2021; 9:567 [View Article] [PubMed]
    [Google Scholar]
  18. Cummins ML, Reid CJ, Djordjevic SP. F plasmid lineages in Escherichia coli ST95: implications for host range, antibiotic resistance, and zoonoses.. mSystems 2022; 7:e0021022 [View Article] [PubMed]
    [Google Scholar]
  19. Kantele A, Lääveri T, Mero S, Häkkinen IMK, Kirveskari J et al. Despite predominance of uropathogenic/extraintestinal pathotypes among travel-acquired extended-spectrum β-lactamase–producing Escherichia coli, the most commonly associated clinical manifestation is travelers’ diarrhea. Clin Infect Dis 2020; 70:210–218 [View Article]
    [Google Scholar]
  20. Stephens C, Arismendi T, Wright M, Hartman A, Gonzalez A et al. F plasmids are the major carriers of antibiotic resistance genes in human-associated commensal Escherichia coli. mSphere 2020; 5:e00709-20 [View Article] [PubMed]
    [Google Scholar]
  21. Reid CJ, Cummins ML, Börjesson S, Brouwer MSM, Hasman H et al. A role for ColV plasmids in the evolution of pathogenic Escherichia coli ST58. Nat Commun 2022; 13:683 [View Article] [PubMed]
    [Google Scholar]
  22. Johnson TJ, Elnekave E, Miller EA, Munoz-Aguayo J, Flores Figueroa C et al. Phylogenomic analysis of extraintestinal pathogenic Escherichia coli sequence type 1193, an emerging multidrug-resistant clonal group. Antimicrob Agents Chemother 2019; 63:e01913–18 [View Article]
    [Google Scholar]
  23. Venturini C, Zingali T, Wyrsch ER, Bowring B, Iredell J et al. Diversity of P1 phage-like elements in multidrug resistant Escherichia coli. Sci Rep 2019; 9:18861 [View Article] [PubMed]
    [Google Scholar]
  24. Dobrindt U. (Patho-)genomics of Escherichia coli. Int J Med Microbiol 2005; 295:357–371 [View Article] [PubMed]
    [Google Scholar]
  25. Galardini M, Clermont O, Baron A, Busby B, Dion S et al. Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia revealed by a genome-wide association study. PLoS Genet 2020; 16:e1009065 [View Article] [PubMed]
    [Google Scholar]
  26. Cusumano CK, Hung CS, Chen SL, Hultgren SJ. Virulence plasmid harbored by uropathogenic Escherichia coli functions in acute stages of pathogenesis. Infect Immun 2010; 78:1457–1467 [View Article] [PubMed]
    [Google Scholar]
  27. Reid CJ, McKinnon J, Djordjevic SP. Clonal ST131-H22 Escherichia coli strains from a healthy pig and a human urinary tract infection carry highly similar resistance and virulence plasmids. Microb Genom 2019; 5:e000295 [View Article] [PubMed]
    [Google Scholar]
  28. Cummins ML, Reid CJ, Roy Chowdhury P, Bushell RN, Esbert N et al. Whole genome sequence analysis of Australian avian pathogenic Escherichia coli that carry the class 1 integrase gene. Microb Genom 2019; 5:e000250 [View Article] [PubMed]
    [Google Scholar]
  29. Moran RA, Holt KE, Hall RM. pCERC3 from a commensal ST95 Escherichia coli: a ColV virulence-multiresistance plasmid carrying a sul3-associated class 1 integron. Plasmid 2016; 84–85:11–19 [View Article] [PubMed]
    [Google Scholar]
  30. Nolan LK, Barnes HJ, Vaillancourt J-P, Abdul-Aziz T, Logue CM. Colibacillosis. In Diseases of Poultry 2013 pp 751–805 [View Article]
    [Google Scholar]
  31. Hicks SJ, Rowbury RJ. Virulence plasmid-associated adhesion of Escherichia coli and its significance for chlorine resistance. J Appl Bacteriol 1986; 61:209–218 [View Article] [PubMed]
    [Google Scholar]
  32. Elankumaran P, Browning GF, Marenda MS, Reid CJ, Djordjevic SP. Close genetic linkage between human and companion animal extraintestinal pathogenic Escherichia coli ST127. Curr Res Microb Sci 2022; 3:100106 [View Article] [PubMed]
    [Google Scholar]
  33. Gaio D, Anantanawat K, To J, Liu M, Monahan L et al. Hackflex: low-cost, high-throughput, Illumina Nextera Flex library construction. Microb Genom 2022; 8:000744 [View Article] [PubMed]
    [Google Scholar]
  34. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  35. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article]
    [Google Scholar]
  36. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  37. Darling AE, Jospin G, Lowe E, Matsen FA 4th, Bik HM et al. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ 2014; 2:e243 [View Article] [PubMed]
    [Google Scholar]
  38. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [View Article] [PubMed]
    [Google Scholar]
  39. Waters NR, Abram F, Brennan F, Holmes A, Pritchard L. Easy phylotyping of Escherichia coli via the EzClermont web app and command-line tool. Access Microbiol 2020; 2:acmi000143 [View Article] [PubMed]
    [Google Scholar]
  40. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  41. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 2014; 15:R46 [View Article] [PubMed]
    [Google Scholar]
  42. Zankari E, Allesøe R, Joensen KG, Cavaco LM, Lund O et al. PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother 2017; 72:2764–2768 [View Article]
    [Google Scholar]
  43. Liu B, Zheng D, Zhou S, Chen L, Yang J. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res 2022; 50:D912–D917 [View Article]
    [Google Scholar]
  44. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article] [PubMed]
    [Google Scholar]
  45. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In Silico detection and typing of plasmids using plasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article]
    [Google Scholar]
  46. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article] [PubMed]
    [Google Scholar]
  47. Liu CM, Stegger M, Aziz M, Johnson TJ, Waits K et al. Escherichia coli St131-H22 as a foodborne uropathogen. mBio 2018; 9:e00470–18 [View Article]
    [Google Scholar]
  48. Brynildsrud O, Bohlin J, Scheffer L, Eldholm V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol 2016; 17: [View Article]
    [Google Scholar]
  49. Gonzalez-Alba JM, Baquero F, Cantón R, Galán JC. Stratified reconstruction of ancestral Escherichia coli diversification. BMC Genomics 2019; 20:936 [View Article] [PubMed]
    [Google Scholar]
  50. Stephens CM, Adams-Sapper S, Sekhon M, Johnson JR, Riley LW. Genomic analysis of factors associated with low prevalence of antibiotic resistance in extraintestinal pathogenic Escherichia coli sequence type 95 strains. mSphere 2017; 2:e00390-16 [View Article] [PubMed]
    [Google Scholar]
  51. Wyrsch ER, Bushell RN, Marenda MS, Browning GF, Djordjevic SP et al. Global phylogeny and F virulence plasmid carriage in pandemic Escherichia coli ST1193. Microbiol Spectr 2022; 10:e0255422 [View Article]
    [Google Scholar]
  52. Elankumaran P, Cummins ML, Browning GF, Marenda MS, Reid CJ et al. Genomic and temporal trends in canine ExPEC reflect those of human ExPEC. Microbiol Spectr 2022; 10:e0129122 [View Article] [PubMed]
    [Google Scholar]
  53. Bogema DR, McKinnon J, Liu M, Hitchick N, Miller N et al. Whole-genome analysis of extraintestinal Escherichia coli sequence type 73 from a single hospital over a 2 year period identified different circulating clonal groups. Microb Genom 2020; 6:e000255 [View Article] [PubMed]
    [Google Scholar]
  54. Kidsley AK, O’Dea M, Saputra S, Jordan D, Johnson JR et al. Genomic analysis of phylogenetic group B2 extraintestinal pathogenic E. coli causing infections in dogs in Australia. Vet Microbiol 2020; 248:108783 [View Article] [PubMed]
    [Google Scholar]
  55. Kidsley AK, O’Dea M, Ebrahimie E, Mohammadi-Dehcheshmeh M, Saputra S et al. Genomic analysis of fluoroquinolone-susceptible phylogenetic group B2 extraintestinal pathogenic Escherichia coli causing infections in cats. Vet Microbiol 2020; 245:108685 [View Article] [PubMed]
    [Google Scholar]
  56. Li D, Wyrsch ER, Elankumaran P, Dolejska M, Marenda MS et al. Genomic comparisons of Escherichia coli ST131 from Australia. Microb Genom 2021; 7:12 [View Article] [PubMed]
    [Google Scholar]
  57. Petty NK, Ben Zakour NL, Stanton-Cook M, Skippington E, Totsika M et al. Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci 2014; 111:5694–5699 [View Article] [PubMed]
    [Google Scholar]
  58. Toulouse JL, Edens TJ, Alejaldre L, Manges AR, Pelletier JN. Integron-associated DfrB4, a previously uncharacterized member of the trimethoprim-resistant dihydrofolate reductase B family, is a clinically identified emergent source of antibiotic resistance. Antimicrob Agents Chemother 2017; 61:e02665-16 [View Article] [PubMed]
    [Google Scholar]
  59. Shaw KJ, Rather PN, Hare RS, Miller GH. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 1993; 57:138–163 [View Article] [PubMed]
    [Google Scholar]
  60. Lacotte Y, Ploy MC, Raherison S. Class 1 integrons are low-cost structures in Escherichia coli. ISME J 2017; 11:1535–1544 [View Article] [PubMed]
    [Google Scholar]
  61. Spurbeck RR, Dinh PC, Walk ST, Stapleton AE, Hooton TM et al. Escherichia coli isolates that carry vat, fyuA, chuA, and yfcV efficiently colonize the urinary tract. Infect Immun 2012; 80:4115–4122 [View Article] [PubMed]
    [Google Scholar]
  62. Dale AP, Woodford N. Extra-intestinal pathogenic Escherichia coli (ExPEC): Disease, carriage and clones. J Infect 2015; 71:615–626 [View Article] [PubMed]
    [Google Scholar]
  63. Wright KJ, Hultgren SJ. Sticky fibers and uropathogenesis: bacterial adhesins in the urinary tract. Future Microbiol 2006; 1:75–87 [View Article] [PubMed]
    [Google Scholar]
  64. Ostolaza H, Goñi FM. Interaction of the bacterial protein toxin alpha-haemolysin with model membranes: protein binding does not always lead to lytic activity. FEBS Lett 1995; 371:303–306 [View Article] [PubMed]
    [Google Scholar]
  65. Wiles TJ, Kulesus RR, Mulvey MA. Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp Mol Pathol 2008; 85:11–19 [View Article] [PubMed]
    [Google Scholar]
  66. Rodríguez I, Figueiredo AS, Sousa M, Aracil-Gisbert S, Fernández-de-Bobadilla MD et al. A 21-year survey of Escherichia coli from Bloodstream Infections (BSI). mSphere 2021; 6:e00868–21 [View Article]
    [Google Scholar]
  67. Gibreel TM, Dodgson AR, Cheesbrough J, Fox AJ, Bolton FJ et al. Population structure, virulence potential and antibiotic susceptibility of uropathogenic Escherichia coli from Northwest England. J Antimicrob Chemother 2012; 67:346–356 [View Article] [PubMed]
    [Google Scholar]
  68. Yamaji R, Rubin J, Thys E, Friedman CR, Riley LW et al. Persistent pandemic lineages of uropathogenic Escherichia coli in a college community from 1999 to 2017. J Clin Microbiol 2018; 56:e01834-17 [View Article] [PubMed]
    [Google Scholar]
  69. Fibke CD, Croxen MA, Geum HM, Glass M, Wong E et al. Genomic epidemiology of major extraintestinal pathogenic Escherichia coli lineages causing urinary tract infections in young women across Canada. Open Forum Infect Dis 2019; 6:fz431 [View Article] [PubMed]
    [Google Scholar]
  70. Doumith M, Day M, Ciesielczuk H, Hope R, Underwood A et al. Rapid identification of major Escherichia coli sequence types causing urinary tract and bloodstream infections. J Clin Microbiol 2015; 53:160–166 [View Article] [PubMed]
    [Google Scholar]
  71. Dale AP, Woodford N. Extra-intestinal pathogenic Escherichia coli (ExPEC): Disease, carriage and clones. J Infect 2015; 71:615–626 [View Article] [PubMed]
    [Google Scholar]
  72. Bengtsson S, Naseer U, Sundsfjord A, Kahlmeter G, Sundqvist M. Sequence types and plasmid carriage of uropathogenic Escherichia coli devoid of phenotypically detectable resistance. J Antimicrob Chemother 2012; 67:69–73 [View Article] [PubMed]
    [Google Scholar]
  73. Sunde M, Simonsen GS, Slettemeås JS, Böckerman I, Norström M. Integron, plasmid and host strain characteristics of Escherichia coli from humans and food included in the norwegian antimicrobial resistance monitoring programs. PLoS One 2015; 10:e0128797 [View Article] [PubMed]
    [Google Scholar]
  74. Moura A, Soares M, Pereira C, Leitão N, Henriques I et al. INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. Bioinformatics 2009; 25:1096–1098 [View Article] [PubMed]
    [Google Scholar]
  75. Pitout JDD, DeVinney R. Escherichia coli ST131: a multidrug-resistant clone primed for global domination. F1000Res 2017; 6:F1000 Faculty Rev-195 [View Article] [PubMed]
    [Google Scholar]
  76. Johnson JR, Tchesnokova V, Johnston B, Clabots C, Roberts PL et al. Abrupt emergence of a single dominant multidrug-resistant strain of Escherichia coli. J Infect Dis 2013; 207:919–928 [View Article]
    [Google Scholar]
  77. Gillings MR. Integrons: past, present, and future. Microbiol Mol Biol Rev 2014; 78:257–277 [View Article] [PubMed]
    [Google Scholar]
  78. Nemergut DR, Robeson MS, Kysela RF, Martin AP, Schmidt SK et al. Insights and inferences about integron evolution from genomic data. BMC Genomics 2008; 9:261 [View Article] [PubMed]
    [Google Scholar]
  79. Wyrsch ER, Nesporova K, Tarabai H, Jamborova I, Bitar I et al. Urban wildlife crisis: Australian silver gull iIs a bystander host to widespread clinical antibiotic resistance. mSystems 2022; 7:e0015822 [View Article] [PubMed]
    [Google Scholar]
  80. Clark AW, Durkin MJ, Olsen MA, Keller M, Ma Y et al. Rural–urban differences in antibiotic prescribing for uncomplicated urinary tract infection. Infect Control Hosp Epidemiol 2021; 42:1437–1444 [View Article]
    [Google Scholar]
  81. Yau JW, Thor SM, Tsai D, Speare T, Rissel C. Antimicrobial stewardship in rural and remote primary health care: a narrative review. Antimicrob Resist Infect Control 2021; 10: [View Article]
    [Google Scholar]
  82. Gündoğdu A, Long YB, Vollmerhausen TL, Katouli M. Antimicrobial resistance and distribution of sul genes and integron-associated intI genes among uropathogenic Escherichia coli in Queensland, Australia. J Med Microbiol 2011; 60:1633–1642 [View Article]
    [Google Scholar]
  83. McInnes RS, Uz-Zaman MH, Alam IT, Ho SFS, Moran RA et al. Metagenome-wide analysis of rural and urban surface waters and sediments in Bangladesh identifies human waste as a driver of antibiotic resistance. mSystems 2021; 6:e0013721 [View Article] [PubMed]
    [Google Scholar]
  84. Ludden C, Coll F, Gouliouris T, Restif O, Blane B et al. Defining nosocomial transmission of Escherichia coli and antimicrobial resistance genes: a genomic surveillance study. Lancet Microbe 2021; 2:e472–e480 [View Article] [PubMed]
    [Google Scholar]
  85. Mills EG, Martin MJ, Luo TL, Ong AC, Maybank R et al. A one-year genomic investigation of Escherichia coli epidemiology and nosocomial spread at a large US healthcare network. Genome Med 2022; 14:147 [View Article] [PubMed]
    [Google Scholar]
  86. de Souza da-Silva AP, de Sousa VS, Martins N, da Silva Dias RC, Bonelli RR et al. Escherichia coli sequence type 73 as a cause of community acquired urinary tract infection in men and women in Rio de Janeiro, Brazil. Diagn Microbiol Infect Dis 2017; 88:69–74 [View Article] [PubMed]
    [Google Scholar]
  87. Manges AR, Harel J, Masson L, Edens TJ, Portt A et al. Multilocus sequence typing and virulence gene profiles associated with Escherichia coli from human and animal sources. Foodborne Pathog Dis 2015; 12:302–310 [View Article] [PubMed]
    [Google Scholar]
  88. Bourne JA, Chong WL, Gordon DM. Genetic structure, antimicrobial resistance and frequency of human associated Escherichia coli sequence types among faecal isolates from healthy dogs and cats living in Canberra, Australia. PLoS One 2019; 14:e0212867 [View Article] [PubMed]
    [Google Scholar]
  89. Liu X, Thungrat K, Boothe DM, Zhang Q. Multilocus sequence typing and virulence profiles in uropathogenic Escherichia coli isolated from cats in the United States. PLoS One 2015; 10:e0143335 [View Article]
    [Google Scholar]
  90. Valat C, Drapeau A, Beurlet S, Bachy V, Boulouis H-J et al. Pathogenic Escherichia coli in dogs reveals the predominance of ST372 and the human-associated ST73 extra-intestinal lineages. Front Microbiol 2020; 11:580 [View Article] [PubMed]
    [Google Scholar]
  91. Melendez D, Roberts MC, Greninger AL, Weissman S, No D et al. Whole-genome analysis of extraintestinal pathogenic Escherichia coli (ExPEC) MDR ST73 and ST127 isolated from endangered southern resident killer whales (Orcinus orca). J Antimicrob Chemother 2019; 74:2176–2180 [View Article] [PubMed]
    [Google Scholar]
  92. Becker S Saidenberg A, van Vliet AHM, Stegger M, Johannesen TB, Semmler T et al. Genomic analysis of the zoonotic ST73 lineage containing avian and human extraintestinal pathogenic Escherichia coli (ExPEC). Vet Microbiol 2022; 267:109372 [View Article] [PubMed]
    [Google Scholar]
  93. Alhashash F, Wang X, Paszkiewicz K, Diggle M, Zong Z et al. Increase in bacteraemia cases in the East Midlands region of the UK due to MDR Escherichia coli ST73: high levels of genomic and plasmid diversity in causative isolates. J Antimicrob Chemother 2016; 71:339–343 [View Article] [PubMed]
    [Google Scholar]
  94. Darling AE, McKinnon J, Worden P, Santos J, Charles IG et al. A draft genome of Escherichia coli sequence type 127 strain 2009-46. Gut Pathog 2014; 6:32 [View Article] [PubMed]
    [Google Scholar]
  95. Nowak K, Fahr J, Weber N, Lübke-Becker A, Semmler T et al. Highly diverse and antimicrobial susceptible Escherichia coli display a naïve bacterial population in fruit bats from the Republic of Congo. PLoS One 2017; 12:e0178146 [View Article]
    [Google Scholar]
  96. Jørgensen SL, Stegger M, Kudirkiene E, Lilje B, Poulsen LL et al. Diversity and population overlap between avian and human Escherichia coli belonging to sequence type 95. mSphere 2019; 4:e00333–18 [View Article]
    [Google Scholar]
  97. Johnson TJ, Kariyawasam S, Wannemuehler Y, Mangiamele P, Johnson SJ et al. The genome sequence of avian pathogenic Escherichia coli strain O1:K1:H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. J Bacteriol 2007; 189:3228–3236 [View Article]
    [Google Scholar]
  98. Moulin-Schouleur M, Répérant M, Laurent S, Brée A, Mignon-Grasteau S et al. Extraintestinal pathogenic Escherichia coli strains of avian and human origin: link between phylogenetic relationships and common virulence patterns. J Clin Microbiol 2007; 45:3366–3376 [View Article]
    [Google Scholar]
  99. Mora A, López C, Dabhi G, Blanco M, Blanco JE et al. Extraintestinal pathogenic Escherichia coli O1:K1:H7/NM from human and avian origin: detection of clonal groups B2 ST95 and D ST59 with different host distribution. BMC Microbiol 2009; 9:132 [View Article]
    [Google Scholar]
  100. Stephens CM, Skerker JM, Sekhon MS, Arkin AP, Riley LW. Complete genome sequences of four Escherichia coli ST95 isolates from bloodstream infections. Genome Announc 2015; 3:e01241–15 [View Article]
    [Google Scholar]
  101. Kudinha T, Johnson JR, Andrew SD, Kong F, Anderson P et al. Distribution of phylogenetic groups, sequence type ST131, and virulence-associated traits among Escherichia coli isolates from men with pyelonephritis or cystitis and healthy controls. Clin Microbiol Infect 2013; 19:E173–80 [View Article] [PubMed]
    [Google Scholar]
  102. Sora VM, Meroni G, Martino PA, Soggiu A, Bonizzi L et al. Extraintestinal pathogenic Escherichia coli: virulence factors and antibiotic resistance. Pathogens 2021; 10:1355 [View Article] [PubMed]
    [Google Scholar]
  103. Massot M, Daubié A-S, Clermont O, Jauréguy F, Couffignal C et al. Phylogenetic, virulence and antibiotic resistance characteristics of commensal strain populations of Escherichia coli from community subjects in the Paris area in 2010 and evolution over 30 years. Microbiology 2016; 162:642–650 [View Article]
    [Google Scholar]
  104. Marin J, Clermont O, Royer G, Mercier-Darty M, Decousser JW et al. The population genomics of increased virulence and antibiotic resistance in human commensal Escherichia coli over 30 years in France. Appl Environ Microbiol 2022; 88:e0066422 [View Article] [PubMed]
    [Google Scholar]
  105. Bonten M, Johnson JR, van den Biggelaar AHJ, Georgalis L, Geurtsen J et al. Epidemiology of Escherichia coli bacteremia: a systematic literature review. Clin Infect Dis 2021; 72:1211–1219 [View Article] [PubMed]
    [Google Scholar]
  106. Messerer M, Fischer W, Schubert S. Investigation of horizontal gene transfer of pathogenicity islands in Escherichia coli using next-generation sequencing. PLoS One 2017; 12:e0179880 [View Article] [PubMed]
    [Google Scholar]
  107. Tyson GH, McDermott PF, Li C, Chen Y, Tadesse DA et al. WGS accurately predicts antimicrobial resistance in Escherichia coli. J Antimicrob Chemother 2015; 70:2763–2769 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001068
Loading
/content/journal/mgen/10.1099/mgen.0.001068
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error