Skip to content
1887

Abstract

In spring 2016, a shallow hypersaline pond (50×25 m) was found in the Cuatro Cienegas Basin (CCB). This pond, known as Archaean Domes (AD) because of its elastic microbial mats that form dome-shaped structures due to the production of reducing gases reminiscent of the Archaean eon, such as methane and hydrogen sulfide, harbour a highly diverse microbial community, rich in halophilic and methanogenic archaea. AD is a seasonally fluctuating hypersaline site, with salinity ranging from low hypersaline (5.3%) during the wet season to high hypersaline (saturation) during the dry season. To characterize the viral community and to test whether it resembles those of other hypersaline sites (whose diversity is conditioned by salinity), or if it is similar to other CCB sites (with which it shares a common geological history), we generated 12 metagenomes from different seasons and depths over a 4 year period and compared them to 35 metagenomes from varied environments. Haloarchaeaviruses were detected, but were never dominant (average of 15.37 % of the total viral species), and the viral community structure and diversity were not affected by environmental fluctuations. In fact, unlike other viral communities at hypersaline sites, AD remained more diverse than other environments regardless of season. β-Diversity analyses show that AD is closely related to other CCB sites, although it has a unique viral community that forms a cluster of its own. The similarity of two surface samples to the 30 and 50 cm depth samples, as well as the observed increase in diversity at greater depths, supports the hypothesis that the diversity of CCB has evolved as a result of a long time environmental stability of a deep aquifer that functions as a ‘seed bank’ of great microbial diversity that is transported to the surface by sporadic groundwater upwelling events.

Funding
This study was supported by the:
  • Agencia Nacional de Investigación y Desarrollo (Award R-20F0009)
    • Principle Award Recipient: ValeriaSouza
  • Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (Award IN204822)
    • Principle Award Recipient: ValeriaSouza
  • Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (Award IG200319)
    • Principle Award Recipient: ValeriaSouza
  • Consejo Nacional de Ciencia y Tecnología (Award 814975)
    • Principle Award Recipient: AlejandroMiguel Cisneros-Martínez
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001063
2023-07-17
2025-01-23
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/7/mgen001063.html?itemId=/content/journal/mgen/10.1099/mgen.0.001063&mimeType=html&fmt=ahah

References

  1. Cisneros-Martínez AM, Eguiarte LE, Souza V. Metagenomic comparisons reveal a highly diverse and unique viral community in a seasonally fluctuating hypersaline microbial mat. figshare Figshare 2023 https://doi.org/10.6084/m9.figshare.20958184.v1
    [Google Scholar]
  2. Souza V, Siefert JL, Escalante AE, Elser JJ, Eguiarte LE. The Cuatro Ciénegas Basin in Coahuila, Mexico: an astrobiological Precambrian park. Astrobiology 2012; 12:641–647 [View Article] [PubMed]
    [Google Scholar]
  3. Souza V, Espinosa-Asuar L, Escalante AE, Eguiarte LE, Farmer J et al. An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc Natl Acad Sci 2006; 103:6565–6570 [View Article] [PubMed]
    [Google Scholar]
  4. Walsh MM. Microbial mats on the early earth: the archaean rock record. In Seckbach J, Oren A. eds Microbial Mats: Modern and Ancient Microorganisms in Stratified Ecosystems London: Springer; 2010 pp 43–51 [View Article]
    [Google Scholar]
  5. Alcaraz LD, Olmedo G, Bonilla G, Cerritos R, Hernández G et al. The genome of Bacillus coahuilensis reveals adaptations essential for survival in the relic of an ancient marine environment. Proc Natl Acad Sci 2008; 105:5803–5808 [View Article] [PubMed]
    [Google Scholar]
  6. Moreno-Letelier A, Olmedo-Alvarez G, Eguiarte LE, Souza V. Divergence and phylogeny of Firmicutes from the Cuatro Ciénegas Basin, Mexico: a window to an ancient ocean. Astrobiology 2012; 12:674–684 [View Article] [PubMed]
    [Google Scholar]
  7. Souza V, Moreno-Letelier A, Travisano M, Alcaraz LD, Olmedo G et al. The lost world of Cuatro Ciénegas Basin, a relictual bacterial niche in a desert oasis. Elife 2018; 7:e38278 [View Article] [PubMed]
    [Google Scholar]
  8. Wolaver BD, Crossey LJ, Karlstrom KE, Banner JL, Cardenas MB et al. Identifying origins of and pathways for spring waters in a semiarid basin using He, Sr, and C isotopes: Cuatrocienegas Basin, Mexico. Geosphere 2013; 9:113–125 [View Article]
    [Google Scholar]
  9. Medina-Chávez NO, Viladomat-Jasso M, Olmedo-Álvarez G, Eguiarte LE, Souza V et al. Diversity of archaea domain in Cuatro Cienegas Basin: archaean domes. bioRxiv 2019 [View Article]
    [Google Scholar]
  10. Espinosa-Asuar L, Monroy-Guzmán C, Madrigal-Trejo D, Navarro-Miranda M, Sánchez-Pérez J et al. Diversity of an uncommon elastic hypersaline microbial mat along a small-scale transect. PeerJ 2022; 10:e13579 [View Article] [PubMed]
    [Google Scholar]
  11. Madrigal-Trejo D. Análisis del metametaloma en los tapetes microbianos de Domos del Arqueano, Cuatro Ciénegas, como recapitulación del uso de metales a lo largo de la historia de la Tierra. CdMx (MX): Universidad Nacional Autónoma de México; 2022 http://132.248.9.195/ptd2022/enero/0821431/Index.html accessed 5 September 2022
  12. Banciu HL, Sorokin DY. Adaptation in Haloalkaliphiles and Natronophilic bacteria. In Seckbach J, Oren A, Stan-Lotter H. eds Polyextremophiles: Life Under Multiple Forms of Stress London: Springer; 2013 pp 123–178 [View Article]
    [Google Scholar]
  13. Halophilic MH. Acidophilic and Haloacidophilic prokaryotes. In Seckbach J, Oren A, Stan-Lotter H. eds Polyextremophiles: Life Under Multiple Forms of Stress Springer; 2013 pp 203–213 [View Article]
    [Google Scholar]
  14. Madrigal-Trejo D, Sánchez-Pérez J, Espinosa-Asuar L, Souza V. Modern microbial mats from the Chihuahuan Desert provide insights into ecological stability throughout Earth’s history. bioRxiv 2021 [View Article]
    [Google Scholar]
  15. DasSarma S, DasSarma P. Halophiles. In ELS Chichester: John Wiley & Sons; 2012 [View Article]
    [Google Scholar]
  16. Ventosa A, Fernández AB, León MJ, Sánchez-Porro C, Rodriguez-Valera F. The Santa Pola saltern as a model for studying the microbiota of hypersaline environments. Extremophiles 2014; 18:811–824 [View Article] [PubMed]
    [Google Scholar]
  17. Litchfield CD. Saline lakes. In Reitner J, Thiel V. eds Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series Dordrecht: Springer; 2011 pp 765–768
    [Google Scholar]
  18. Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML et al. Living at the extremes: extremophiles and the limits of life in a planetary context. Front Microbiol 2019; 10:1785 [View Article] [PubMed]
    [Google Scholar]
  19. Boros E, Kolpakova M. A review of the defining chemical properties of soda lakes and pans: an assessment on a large geographic scale of Eurasian inland saline surface waters. PLoS One 2018; 13:e0202205 [View Article] [PubMed]
    [Google Scholar]
  20. Kempe S, Kazmierczak J. Soda lakes. In Reitner J, Thiel V. eds Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series Dordrecht: Springer; 2011 pp 824–828
    [Google Scholar]
  21. McGenity TJ, Oren A. Hypersaline environments. In Bell EM. eds Life at Extremes: Environments, Organisms and Strategies of Survival Malta: CAB International; 2012 pp 402–437 [View Article]
    [Google Scholar]
  22. Castelán-Sánchez HG, Elorrieta P, Romoacca P, Liñan-Torres A, Sierra JL et al. Intermediate-salinity systems at high altitudes in the Peruvian Andes Unveil a high diversity and abundance of bacteria and viruses. Genes 2019; 10:891 [View Article] [PubMed]
    [Google Scholar]
  23. Vavourakis CD, Ghai R, Rodriguez-Valera F, Sorokin DY, Tringe SG et al. Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline Soda Lake Brines. Front Microbiol 2016; 7:211 [View Article] [PubMed]
    [Google Scholar]
  24. Jones BE, Grant WD, Duckworth AW, Owenson GG. Microbial diversity of soda lakes. Extremophiles 1998; 2:191–200 [View Article] [PubMed]
    [Google Scholar]
  25. Roux S, Enault F, Ravet V, Colombet J, Bettarel Y et al. Analysis of metagenomic data reveals common features of halophilic viral communities across continents. Environ Microbiol 2016; 18:889–903 [View Article] [PubMed]
    [Google Scholar]
  26. Prangishvili D, Bamford DH, Forterre P, Iranzo J, Koonin EV et al. The enigmatic archaeal virosphere. Nat Rev Microbiol 2017; 15:724–739 [View Article] [PubMed]
    [Google Scholar]
  27. Wommack KE, Colwell RR. Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 2000; 64:69–114 [View Article] [PubMed]
    [Google Scholar]
  28. Sullivan MB, Weitz JS, Wilhelm S. Viral ecology comes of age. Environ Microbiol Rep 2017; 9:33–35 [View Article] [PubMed]
    [Google Scholar]
  29. Santos F, Meyerdierks A, Peña A, Rosselló-Mora R, Amann R et al. Metagenomic approach to the study of halophages: the environmental halophage 1. Environ Microbiol 2007; 9:1711–1723 [View Article]
    [Google Scholar]
  30. Winter C, Bouvier T, Weinbauer MG, Thingstad TF. Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “killing the winner” hypothesis revisited. Microbiol Mol Biol Rev 2010; 74:42–57 [View Article] [PubMed]
    [Google Scholar]
  31. Guixa-Boixareu N, Calderón-Paz JI, Heldal M, Bratbak G, Pedrós-Alió C. Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat Microb Ecol 1996; 11:215–227 [View Article]
    [Google Scholar]
  32. Desnues C, Rodriguez-Brito B, Rayhawk S, Kelley S, Tran T et al. Biodiversity and biogeography of phages in modern stromatolites and thrombolites. Nature 2008; 452:340–343 [View Article] [PubMed]
    [Google Scholar]
  33. Taboada B, Isa P, Gutiérrez-Escolano AL, Del Ángel RM, Ludert JE et al. The geographic structure of viruses in the Cuatro Ciénegas Basin, a unique oasis in Northern Mexico, reveals a highly diverse population on a small geographic scale. Appl Environ Microbiol 2018; 84:e00465-18 [View Article] [PubMed]
    [Google Scholar]
  34. Alleon J, Bernard S, Olivier N, Thomazo C, Marin-Carbonne J. Inherited geochemical diversity of 3.4 Ga organic films from the Buck Reef Chert, South Africa. Commun Earth Environ 2021; 2:6 [View Article]
    [Google Scholar]
  35. Purdy KJ. Nucleic acid recovery from complex environmental samples. Methods Enzymol 2005; 397:271–292 [View Article] [PubMed]
    [Google Scholar]
  36. Emerson JB, Thomas BC, Andrade K, Allen EE, Heidelberg KB et al. Dynamic viral populations in hypersaline systems as revealed by metagenomic assembly. Appl Environ Microbiol 2012; 78:6309–6320 [View Article] [PubMed]
    [Google Scholar]
  37. Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M et al. Functional metagenomic profiling of nine biomes. Nature 2008; 452:629–632 [View Article] [PubMed]
    [Google Scholar]
  38. Dinsdale EA, Pantos O, Smriga S, Edwards RA, Angly F et al. Microbial ecology of four coral atolls in the Northern Line Islands. PLoS One 2008; 3:e1584 [View Article]
    [Google Scholar]
  39. Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA et al. The marine viromes of four oceanic regions. PLoS Biol 2006; 4:e368 [View Article] [PubMed]
    [Google Scholar]
  40. McDaniel L, Breitbart M, Mobberley J, Long A, Haynes M et al. Metagenomic analysis of lysogeny in Tampa Bay: implications for prophage gene expression. PLoS One 2008; 3:e3263 [View Article] [PubMed]
    [Google Scholar]
  41. Roux S, Enault F, Robin A, Ravet V, Personnic S et al. Assessing the diversity and specificity of two freshwater viral communities through metagenomics. PLoS One 2012; 7:e33641 [View Article]
    [Google Scholar]
  42. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  43. Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun 2016; 7:11257 [View Article] [PubMed]
    [Google Scholar]
  44. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 2013; 8:e61217 [View Article] [PubMed]
    [Google Scholar]
  45. Team RC. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Vienna, Austria: R Foundation for Statistical Computing; 2021
    [Google Scholar]
  46. Cameron ES, Schmidt PJ, Tremblay B-M, Emelko MB, Müller KM. Enhancing diversity analysis by repeatedly rarefying next generation sequencing data describing microbial communities. Sci Rep 2021; 11:22302 [View Article] [PubMed]
    [Google Scholar]
  47. Wickham H. ggplot2: elegant graphics for data analysis. New York, USA: Springer; 2016 https://doi.org/10.1007/978-0-387-98141-3
  48. Felsenstein J. PHYLIP - Phylogeny inference package (version 3.2). Cladistics 1989; 5:164–166
    [Google Scholar]
  49. Jiménez-Jacinto V, Sanchez-Flores A, Vega-Alvarado L. Integrative Differential Expression Analysis for Multiple EXperiments (IDEAMEX): a web server tool for integrated RNA-Seq data analysis. Front Genet 2019; 10:279 [View Article] [PubMed]
    [Google Scholar]
  50. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26:139–140 [View Article] [PubMed]
    [Google Scholar]
  51. Dávila-Ramos S, Castelán-Sánchez HG, Martínez-Ávila L, Sánchez-Carbente MDR, Peralta R et al. A review on viral metagenomics in extreme environments. Front Microbiol 2019; 10:2403 [View Article] [PubMed]
    [Google Scholar]
  52. Krupovic M, Cvirkaite-Krupovic V, Iranzo J, Prangishvili D, Koonin EV. Viruses of archaea: structural, functional, environmental and evolutionary genomics. Virus Res 2018; 244:181–193 [View Article] [PubMed]
    [Google Scholar]
  53. Luk AWS, Williams TJ, Erdmann S, Papke RT, Cavicchioli R. Viruses of haloarchaea. Life 2014; 4:681–715 [View Article] [PubMed]
    [Google Scholar]
  54. Pietilä MK, Demina TA, Atanasova NS, Oksanen HM, Bamford DH. Archaeal viruses and bacteriophages: comparisons and contrasts. Trends Microbiol 2014; 22:334–344 [View Article] [PubMed]
    [Google Scholar]
  55. González B, Monroe L, Li K, Yan R, Wright E et al. Phage G structure at 6.1 a resolution, condensed DNA, and host identity revision to a Lysinibacillus. J Mol Biol 2020; 432:4139–4153 [View Article] [PubMed]
    [Google Scholar]
  56. Lynch KH, Stothard P, Dennis JJ. Comparative analysis of two phenotypically-similar but genomically-distinct Burkholderia cenocepacia-specific bacteriophages. BMC Genomics 2012; 13:223 [View Article]
    [Google Scholar]
  57. Nilsson E, Li K, Fridlund J, Šulčius S, Bunse C et al. Genomic and seasonal variations among aquatic phages infecting the Baltic Sea gammaproteobacterium Rheinheimera sp. strain BAL341. Appl Environ Microbiol 2019; 85:e01003-19 [View Article] [PubMed]
    [Google Scholar]
  58. Stroupe ME, Brewer TE, Sousa DR, Jones KM. The structure of Sinorhizobium meliloti phage ΦM12, which has a novel T=19l triangulation number and is the founder of a new group of T4-superfamily phages. Virology 2014; 450–451:205–212 [View Article] [PubMed]
    [Google Scholar]
  59. Ash KT, Drake KM, Gibbs WS, Ely B. Genomic diversity of type B3 bacteriophages of Caulobacter crescentus. Curr Microbiol 2017; 74:779–786 [View Article] [PubMed]
    [Google Scholar]
  60. Garcia-Heredia I, Martin-Cuadrado A-B, Mojica FJM, Santos F, Mira A et al. Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses. PLoS One 2012; 7:e33802 [View Article] [PubMed]
    [Google Scholar]
  61. Csardi G, Nepusz T. The Igraph Software Package for Complex Network Research InterJournal; Complex Systems:1695; 2006
    [Google Scholar]
  62. Escalante AE, Eguiarte LE, Espinosa-Asuar L, Forney LJ, Noguez AM et al. Diversity of aquatic prokaryotic communities in the Cuatro Cienegas basin. FEMS Microbiol Ecol 2008; 65:50–60 [View Article] [PubMed]
    [Google Scholar]
  63. García-Ulloa M, Souza V, Esquivel-Hernández DA, Sánchez-Pérez J, Espinosa-Asuar L et al. Recent differentiation of aquatic bacterial communities in a hydrological system in the Cuatro Ciénegas Basin, after a natural perturbation. Front Microbiol 2022; 13:825167 [View Article] [PubMed]
    [Google Scholar]
  64. Kempe S, Kazmierczak J. Soda ocean hypothesis. In Reitner J, Thiel V. eds Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series Dordrecht: Springer; 2011 pp 829–833 [View Article]
    [Google Scholar]
  65. Soberón J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 2007; 10:1115–1123 [View Article] [PubMed]
    [Google Scholar]
  66. Yachi S, Loreau M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci 1999; 96:1463–1468 [View Article] [PubMed]
    [Google Scholar]
  67. Lanzén A, Simachew A, Gessesse A, Chmolowska D, Jonassen I et al. Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of Ethiopian soda lakes. PLoS One 2013; 8:e72577 [View Article] [PubMed]
    [Google Scholar]
  68. Gorbushina AA, Krumbein WE. The poikilotrophic micro-organism and its environment. In Seckbach J. eds Enigmatic Microorganisms and Life in Extreme Environments Dordrecht: Springer; 1999 pp 177–185
    [Google Scholar]
  69. Johannesson KH, Cortés A, Kilroy KC. Reconnaissance isotopic and hydrochemical study of Cuatro Ciénegas groundwater, Coahuila, México. J South Am Earth Sci 2004; 17:171–180 [View Article]
    [Google Scholar]
  70. Rebollar EA, Avitia M, Eguiarte LE, González-González A, Mora L et al. Water-sediment niche differentiation in ancient marine lineages of Exiguobacterium endemic to the Cuatro Cienegas Basin. Environ Microbiol 2012; 14:2323–2333 [View Article] [PubMed]
    [Google Scholar]
  71. Delgado-García M, Contreras-Ramos SM, Rodríguez JA, Mateos-Díaz JC, Aguilar CN et al. Isolation of halophilic bacteria associated with saline and alkaline-sodic soils by culture dependent approach. Heliyon 2018; 4:e00954 [View Article] [PubMed]
    [Google Scholar]
  72. Boyd CE. pH, carbon dioxide, and alkalinity. In Water Quality Springer; 2015 pp 153–178
    [Google Scholar]
  73. Dillon JG. The role of sulfate reduction in stromatolites and microbial mats: ancient and modern perspectives. In Tewari VC, Seckbach J. eds STROMATOLITES: Interaction of Microbes with Sediments, Cellular Origin, Life in Extreme Habitats and Astrobiology 18 Springer; 2011 pp 571–590 [View Article]
    [Google Scholar]
  74. Lyons WB, Long DT, Hines ME, Gaudette HE, Armstrong PB. Calcification of cyanobacterial mats in Solar Lake, Sinai. Geol 1984; 12:623 [View Article]
    [Google Scholar]
  75. Berner RA, Scott MR, Thomlinson C. Carbonate alkalinity in the pore waters of anoxic marine sediments. Limnol Oceanogr 1970; 15:544–549 [View Article]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001063
Loading
/content/journal/mgen/10.1099/mgen.0.001063
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error