Skip to content
1887

Abstract

is a zoonotic species causing cryptosporidiosis in humans in addition to its natural hosts dogs and other fur animals. To understand the genetic basis for host adaptation, we sequenced the genomes of from dogs, minks, and foxes and conducted a comparative genomics analysis. While the genomes of have similar gene contents and organisations, they (~41.0 %) and (39.6 %) have GC content much higher than other spp. (24.3–32.9 %) sequenced to date. The high GC content is mostly restricted to subtelomeric regions of the eight chromosomes. Most of these GC-balanced genes encode specific proteins that have intrinsically disordered regions and are involved in host-parasite interactions. Natural selection appears to play a more important role in the evolution of codon usage in GC-balanced , and most of the GC-balanced genes have undergone positive selection. While the identity in whole genome sequences between the mink- and dog-derived isolates is 99.9 % (9365 SNVs), it is only 96.0 % (362 894 SNVs) between them and the fox-derived isolate. In agreement with this, the fox-derived isolate possesses more subtelomeric genes encoding invasion-related protein families. Therefore, the change in subtelomeric GC content appears to be responsible for the more GC-balanced genomes, and the fox-derived isolate could represent a new species.

Funding
This study was supported by the:
  • Innovation Team Project of Guangdong Universities (Award 2019KCXTD001)
    • Principle Award Recipient: YaoyuFeng
  • 111 Project of Guangdong Universities (Award D20008)
    • Principle Award Recipient: LihuaXiao
  • National Natural Science Foundation of China (Award 32150710530)
    • Principle Award Recipient: LihuaXiao
  • National Natural Science Foundation of China (Award 31820103014)
    • Principle Award Recipient: LihuaXiao
  • Guangdong Major Project of Basic and Applied Basic Research (Award 2020B0301030007)
    • Principle Award Recipient: LihuaXiao
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001052
2023-07-03
2025-01-21
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/7/mgen001052.html?itemId=/content/journal/mgen/10.1099/mgen.0.001052&mimeType=html&fmt=ahah

References

  1. Checkley W, White AC, Jaganath D, Arrowood MJ, Chalmers RM et al. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. Lancet Infect Dis 2015; 15:85–94 [View Article] [PubMed]
    [Google Scholar]
  2. Ryan U, Zahedi A, Feng Y, Xiao L. An update on zoonotic Cryptosporidium species and genotypes in humans. Animals 2021; 11:3307 [View Article] [PubMed]
    [Google Scholar]
  3. Yang X, Guo Y, Xiao L, Feng Y. Molecular epidemiology of human cryptosporidiosis in low- and middle-income countries. Clin Microbiol Rev 2021; 34:e00087-19 [View Article] [PubMed]
    [Google Scholar]
  4. Feng Y, Ryan UM, Xiao L. Genetic diversity and population structure of Cryptosporidium. Trends Parasitol 2018; 34:997–1011 [View Article] [PubMed]
    [Google Scholar]
  5. Li J, Ryan U, Guo Y, Feng Y, Xiao L. Advances in molecular epidemiology of cryptosporidiosis in dogs and cats. Int J Parasitol 2021; 51:787–795 [View Article] [PubMed]
    [Google Scholar]
  6. Zhang S, Tao W, Liu C, Jiang Y, Wan Q et al. First report of Cryptosporidium canis in foxes (Vulpes vulpes) and raccoon dogs (Nyctereutes procyonoides) and identification of several novel subtype families for Cryptosporidium mink genotype in minks (Mustela vison) in China. Infect Genet Evol 2016; 41:21–25 [View Article] [PubMed]
    [Google Scholar]
  7. Trout JM, Santín M, Fayer R. Giardia and Cryptosporidium species and genotypes in coyotes (Canis latrans). J Zoo Wildl Med 2006; 37:141–144 [View Article] [PubMed]
    [Google Scholar]
  8. Mateo M, de Mingo MH, de Lucio A, Morales L, Balseiro A et al. Occurrence and molecular genotyping of Giardia duodenalis and Cryptosporidium spp. in wild mesocarnivores in Spain. Vet Parasitol 2017; 235:86–93 [View Article] [PubMed]
    [Google Scholar]
  9. Xiao L, Sulaiman IM, Ryan UM, Zhou L, Atwill ER et al. Host adaptation and host-parasite co-evolution in Cryptosporidium: implications for taxonomy and public health. Int J Parasitol 2002; 32:1773–1785 [View Article] [PubMed]
    [Google Scholar]
  10. Jiang W, Roellig DM, Guo Y, Li N, Feng Y et al. Development of a subtyping tool for zoonotic pathogen Cryptosporidium canis. J Clin Microbiol 2021; 59:e02474-20 [View Article] [PubMed]
    [Google Scholar]
  11. Wang W, Wei Y, Cao S, Wu W, Zhao W et al. Divergent Cryptosporidium species and host-adapted Cryptosporidium canis subtypes in farmed minks, raccoon dogs and foxes in Shandong, China. Front Cell Infect Microbiol 2022; 12:980917 [View Article] [PubMed]
    [Google Scholar]
  12. Fan Y, Feng Y, Xiao L. Comparative genomics: how has it advanced our knowledge of cryptosporidiosis epidemiology?. Parasitol Res 2019; 118:3195–3204 [View Article] [PubMed]
    [Google Scholar]
  13. Khan A, Shaik JS, Grigg ME. Genomics and molecular epidemiology of Cryptosporidium species. Acta Trop 2018; 184:1–14 [View Article] [PubMed]
    [Google Scholar]
  14. Kim KU, Park SK, Kang SA, Park MK, Cho MK et al. Comparison of functional gene annotation of Toxascaris leonina and Toxocara canis using CLC genomics workbench. Korean J Parasitol 2013; 51:525–530 [View Article] [PubMed]
    [Google Scholar]
  15. Xu Z, Li N, Guo Y, Feng Y, Xiao L. Comparative genomic analysis of three intestinal species reveals reductions in secreted pathogenesis determinants in bovine-specific and non-pathogenic Cryptosporidium species. Microb Genom 2020; 6:e000379 [View Article] [PubMed]
    [Google Scholar]
  16. Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G et al. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 2004; 304:441–445 [View Article] [PubMed]
    [Google Scholar]
  17. Ifeonu OO, Chibucos MC, Orvis J, Su Q, Elwin K et al. Annotated draft genome sequences of three species of Cryptosporidium: Cryptosporidium meleagridis isolate UKMEL1, C. baileyi isolate TAMU-09Q1 and C. hominis isolates TU502_2012 and UKH1. Pathog Dis 2016; 74:ftw080 [View Article] [PubMed]
    [Google Scholar]
  18. Liu S, Roellig DM, Guo Y, Li N, Frace MA et al. Evolution of mitosome metabolism and invasion-related proteins in Cryptosporidium. BMC Genomics 2016; 17:1006 [View Article] [PubMed]
    [Google Scholar]
  19. Li J, Guo Y, Roellig DM, Li N, Feng Y et al. Cryptosporidium felis differs from other Cryptosporidium spp. in codon usage. Microb Genom 2021; 7:000711 [View Article]
    [Google Scholar]
  20. Feng Y, Li N, Roellig DM, Kelley A, Liu G et al. Comparative genomic analysis of the IId subtype family of Cryptosporidium parvum. Int J Parasitol 2017; 47:281–290 [View Article] [PubMed]
    [Google Scholar]
  21. Bernardi G, Bernardi G. Compositional constraints and genome evolution. J Mol Evol 1986; 24:1–11 [View Article] [PubMed]
    [Google Scholar]
  22. Šmarda P, Bureš P, Horová L, Leitch IJ, Mucina L et al. Ecological and evolutionary significance of genomic GC content diversity in monocots. Proc Natl Acad Sci U S A 2014; 111:E4096–102 [View Article] [PubMed]
    [Google Scholar]
  23. Hu E-Z, Lan X-R, Liu Z-L, Gao J, Niu D-K. A positive correlation between GC content and growth temperature in prokaryotes. BMC Genomics 2022; 23:110 [View Article] [PubMed]
    [Google Scholar]
  24. Videvall E. Plasmodium parasites of birds have the most AT-rich genes of eukaryotes. Microb Genom 2018; 4:e000150 [View Article] [PubMed]
    [Google Scholar]
  25. Nikbakht H, Xia X, Hickey DA. The evolution of genomic GC content undergoes a rapid reversal within the genus Plasmodium. Genome 2014; 57:507–511 [View Article] [PubMed]
    [Google Scholar]
  26. Olovnikov AM, Solovieva AS, Shubernetskaya OS. Subtelomere. In Gu D, Dupre ME. eds Encyclopedia of Gerontology and Population Aging Cham: Springer International Publishing; 2021 pp 4830–4837 [View Article]
    [Google Scholar]
  27. Castillo AI, Nelson ADL, Lyons E. Tail wags the dog? Functional gene classes driving genome-wide GC content in Plasmodium spp. Genome Biol Evol 2019; 11:497–507 [View Article] [PubMed]
    [Google Scholar]
  28. Chanda I, Pan A, Dutta C. Proteome composition in Plasmodium falciparum: higher usage of GC-rich nonsynonymous codons in highly expressed genes. J Mol Evol 2005; 61:513–523 [View Article] [PubMed]
    [Google Scholar]
  29. Isaza JP, Galván AL, Polanco V, Huang B, Matveyev AV et al. Revisiting the reference genomes of human pathogenic Cryptosporidium species: reannotation of C. parvum Iowa and a new C. hominis reference. Sci Rep 2015; 5:16324 [View Article] [PubMed]
    [Google Scholar]
  30. Warrenfeltz S, Kissinger JC. EuPathDB Team Accessing Cryptosporidium omic and isolate data via cryptoDB.org. Methods Mol Biol 2020; 2052:139–192 [View Article] [PubMed]
    [Google Scholar]
  31. Otto TD, Böhme U, Jackson AP, Hunt M, Franke-Fayard B et al. A comprehensive evaluation of rodent malaria parasite genomes and gene expression. BMC Biol 2014; 12:86 [View Article] [PubMed]
    [Google Scholar]
  32. Ueti MW, Johnson WC, Kappmeyer LS, Herndon DR, Mousel MR et al. Comparative analysis of gene expression between Babesia bovis blood stages and kinetes allowed by improved genome annotation. Int J Parasitol 2021; 51:123–136 [View Article] [PubMed]
    [Google Scholar]
  33. Pain A, Renauld H, Berriman M, Murphy L, Yeats CA et al. Genome of the host-cell transforming parasite Theileria annulata compared with T. parva. Science 2005; 309:131–133 [View Article] [PubMed]
    [Google Scholar]
  34. Gardner MJ, Bishop R, Shah T, de Villiers EP, Carlton JM et al. Genome sequence of Theileria parva, a bovine pathogen that transforms lymphocytes. Science 2005; 309:134–137 [View Article] [PubMed]
    [Google Scholar]
  35. Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S et al. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res 2009; 37:D539–543 [View Article] [PubMed]
    [Google Scholar]
  36. Ma C, Gunther S, Cooke B, Coppel RL. Geneious plugins for the access of plasmoDB and piroplasmaDB databases. Parasitol Int 2013; 62:134–136 [View Article] [PubMed]
    [Google Scholar]
  37. Harb OS, Roos DS. ToxoDB: functional genomics resource for Toxoplasma and related organisms. Methods Mol Biol 2020; 2071:27–47 [View Article] [PubMed]
    [Google Scholar]
  38. Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. Methods Mol Biol 2019; 1962:227–245 [View Article] [PubMed]
    [Google Scholar]
  39. Xiao L, Morgan UM, Limor J, Escalante A, Arrowood M et al. Genetic diversity within Cryptosporidium parvum and related Cryptosporidium species. Appl Environ Microbiol 1999; 65:3386–3391 [View Article] [PubMed]
    [Google Scholar]
  40. Guo Y, Li N, Lysén C, Frace M, Tang K et al. Isolation and enrichment of Cryptosporidium DNA and verification of DNA purity for whole-genome sequencing. J Clin Microbiol 2015; 53:641–647 [View Article] [PubMed]
    [Google Scholar]
  41. Andrews S. Fastqc: a quality control tool for high throughput sequence data; 2010
  42. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  43. Mount DW. Using the basic local alignment search tool (BLAST). CSH Protoc 2007; 2007:db [View Article] [PubMed]
    [Google Scholar]
  44. Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004; 14:1394–1403 [View Article] [PubMed]
    [Google Scholar]
  45. Chen C, Chen H, Zhang Y, Thomas HR, Frank MH et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 2020; 13:1194–1202 [View Article] [PubMed]
    [Google Scholar]
  46. Langdon WB. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min 2015; 8:1 [View Article] [PubMed]
    [Google Scholar]
  47. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Curr Protoc Bioinformatics 2020; 70:e102 [View Article] [PubMed]
    [Google Scholar]
  48. Hoff KJ, Stanke M. Predicting genes in single genomes with AUGUSTUS. Curr Protoc Bioinformatics 2019; 65:e57 [View Article] [PubMed]
    [Google Scholar]
  49. Borodovsky M, Lomsadze A. Eukaryotic gene prediction using GeneMark.hmm-E and GeneMark-ES. Curr Protoc Bioinformatics 2011; Chapter 4:4 [View Article] [PubMed]
    [Google Scholar]
  50. Alioto T, Blanco E, Parra G, Guigó R. Using geneid to Identify genes. Curr Protoc Bioinformatics 2018; 64:e56 [View Article] [PubMed]
    [Google Scholar]
  51. Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol 2008; 9:R7 [View Article] [PubMed]
    [Google Scholar]
  52. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  53. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [View Article] [PubMed]
    [Google Scholar]
  54. Conesa A, Götz S. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008; 2008:619832 [View Article] [PubMed]
    [Google Scholar]
  55. Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 2019; 37:420–423 [View Article] [PubMed]
    [Google Scholar]
  56. Fankhauser N, Mäser P. Identification of GPI anchor attachment signals by a Kohonen self-organizing map. Bioinformatics 2005; 21:1846–1852 [View Article] [PubMed]
    [Google Scholar]
  57. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001; 305:567–580 [View Article] [PubMed]
    [Google Scholar]
  58. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007; 35:W182–185 [View Article] [PubMed]
    [Google Scholar]
  59. Shanmugasundram A, Gonzalez-Galarza FF, Wastling JM, Vasieva O, Jones AR. Library of apicomplexan metabolic pathways: a manually curated database for metabolic pathways of apicomplexan parasites. Nucleic Acids Res 2013; 41:D706–713 [View Article] [PubMed]
    [Google Scholar]
  60. Kanehisa M, Sato Y, Kawashima M. KEGG mapping tools for uncovering hidden features in biological data. Protein Sci 2022; 31:47–53 [View Article] [PubMed]
    [Google Scholar]
  61. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA et al. Pfam: the protein families database in 2021. Nucleic Acids Res 2021; 49:D412–D419 [View Article] [PubMed]
    [Google Scholar]
  62. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article] [PubMed]
    [Google Scholar]
  63. Conway JR, Lex A, Gehlenborg N, Hancock J. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 2017; 33:2938–2940 [View Article] [PubMed]
    [Google Scholar]
  64. Zhang Z, Xiao J, Wu J, Zhang H, Liu G et al. ParaAT: a parallel tool for constructing multiple protein-coding DNA alignments. Biochem Biophys Res Commun 2012; 419:779–781 [View Article] [PubMed]
    [Google Scholar]
  65. Danecek P, McCarthy SA. BCFtools/csq: haplotype-aware variant consequences. Bioinformatics 2017; 33:2037–2039 [View Article] [PubMed]
    [Google Scholar]
  66. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012; 6:80–92 [View Article] [PubMed]
    [Google Scholar]
  67. Baptista RP, Li Y, Sateriale A, Sanders MJ, Brooks KL et al. Long-read assembly and comparative evidence-based reanalysis of Cryptosporidium genome sequences reveal expanded transporter repertoire and duplication of entire chromosome ends including subtelomeric regions. Genome Res 2022; 32:203–213 [View Article] [PubMed]
    [Google Scholar]
  68. Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet 2000; 16:276–277 [View Article] [PubMed]
    [Google Scholar]
  69. Ito K, Murphy D. Application of ggplot2 to pharmacometric graphics. CPT Pharmacometrics Syst Pharmacol 2013; 2:e79 [View Article] [PubMed]
    [Google Scholar]
  70. Matos LVS, McEvoy J, Tzipori S, Bresciani KDS, Widmer G. The transcriptome of Cryptosporidium oocysts and intracellular stages. Sci Rep 2019; 9:7856 [View Article] [PubMed]
    [Google Scholar]
  71. Xia X, Xie Z. DAMBE: software package for data analysis in molecular biology and evolution. J Hered 2001; 92:371–373 [View Article] [PubMed]
    [Google Scholar]
  72. Comeron JM, Aguadé M. An evaluation of measures of synonymous codon usage bias. J Mol Evol 1998; 47:268–274 [View Article] [PubMed]
    [Google Scholar]
  73. Wright F. The “effective number of codons” used in a gene. Gene 1990; 87:23–29 [View Article] [PubMed]
    [Google Scholar]
  74. Jenkins GM, Holmes EC. The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Res 2003; 92:1–7 [View Article] [PubMed]
    [Google Scholar]
  75. Anwar AM, Soudy M, Mohamed R. vhcub: virus-host codon usage co-adaptation analysis. F1000Res 2019; 8:2137 [View Article] [PubMed]
    [Google Scholar]
  76. Anwar A. BCAWT: Automated tool for codon usage bias analysis for molecular evolution. J Open Source Softw 2019; 4:1500 [View Article]
    [Google Scholar]
  77. Akashi H, Gojobori T. Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci U S A 2002; 99:3695–3700 [View Article] [PubMed]
    [Google Scholar]
  78. Erdős G, Dosztányi Z. Analyzing protein disorder with IUPred2A. Curr Protoc Bioinformatics 2020; 70:e99 [View Article] [PubMed]
    [Google Scholar]
  79. Walsh I, Martin AJM, Di Domenico T, Tosatto SCE. ESpritz: accurate and fast prediction of protein disorder. Bioinformatics 2012; 28:503–509 [View Article] [PubMed]
    [Google Scholar]
  80. Dumaine JE, Sateriale A, Gibson AR, Reddy AG, Gullicksrud JA et al. The enteric pathogen Cryptosporidium parvum exports proteins into the cytosol of the infected host cell. Elife 2021; 10:e70451 [View Article] [PubMed]
    [Google Scholar]
  81. Dia N, Lavie L, Faye N, Méténier G, Yeramian E et al. Subtelomere organization in the genome of the microsporidian Encephalitozoon cuniculi: patterns of repeated sequences and physicochemical signatures. BMC Genomics 2016; 17:34 [View Article] [PubMed]
    [Google Scholar]
  82. Fraschka SA-K, Henderson RWM, Bártfai R. H3.3 demarcates GC-rich coding and subtelomeric regions and serves as potential memory mark for virulence gene expression in Plasmodium falciparum. Sci Rep 2016; 6:31965 [View Article] [PubMed]
    [Google Scholar]
  83. Gardner MJ, Hall N, Fung E, White O, Berriman M et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 2002; 419:498–511 [View Article] [PubMed]
    [Google Scholar]
  84. Marais G, Mouchiroud D, Duret L. Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes. Proc Natl Acad Sci U S A 2001; 98:5688–5692 [View Article] [PubMed]
    [Google Scholar]
  85. Eisenbarth I, Vogel G, Krone W, Vogel W, Assum G. An isochore transition in the NF1 gene region coincides with a switch in the extent of linkage disequilibrium. Am J Hum Genet 2000; 67:873–880 [View Article] [PubMed]
    [Google Scholar]
  86. Capra JA, Hubisz MJ, Kostka D, Pollard KS, Siepel A. A model-based analysis of GC-biased gene conversion in the human and chimpanzee genomes. PLoS Genet 2013; 9:e1003684 [View Article] [PubMed]
    [Google Scholar]
  87. Bulmer M. The selection-mutation-drift theory of synonymous codon usage. Genetics 1991; 129:897–907 [View Article] [PubMed]
    [Google Scholar]
  88. Chen WH, Lu G, Bork P, Hu S, Lercher MJ. Energy efficiency trade-offs drive nucleotide usage in transcribed regions. Nat Commun 2016; 7:11334 [View Article] [PubMed]
    [Google Scholar]
  89. Rider SD, Zhu G. Cryptosporidium: genomic and biochemical features. Exp Parasitol 2010; 124:2–9 [View Article] [PubMed]
    [Google Scholar]
  90. Scorza V, Tangtrongsup S. Update on the diagnosis and management of Cryptosporidium spp infections in dogs and cats. Top Companion Anim Med 2010; 25:163–169 [View Article] [PubMed]
    [Google Scholar]
  91. Peng Z, Uversky VN, Kurgan L. Genes encoding intrinsic disorder in Eukaryota have high GC content. Intrinsically Disord Proteins 2016; 4:e1262225 [View Article] [PubMed]
    [Google Scholar]
  92. de Koning-Ward TF, Gilson PR, Boddey JA, Rug M, Smith BJ et al. A newly discovered protein export machine in malaria parasites. Nature 2009; 459:945–949 [View Article] [PubMed]
    [Google Scholar]
  93. Hakimi M-A, Olias P, Sibley LD. Toxoplasma effectors targeting host signaling and transcription. Clin Microbiol Rev 2017; 30:615–645 [View Article] [PubMed]
    [Google Scholar]
  94. Xu Z, Guo Y, Roellig DM, Feng Y, Xiao L. Comparative analysis reveals conservation in genome organization among intestinal Cryptosporidium species and sequence divergence in potential secreted pathogenesis determinants among major human-infecting species. BMC Genomics 2019; 20:406 [View Article] [PubMed]
    [Google Scholar]
  95. Roberts CW, Roberts F, Henriquez FL, Akiyoshi D, Samuel BU et al. Evidence for mitochondrial-derived alternative oxidase in the apicomplexan parasite Cryptosporidium parvum: a potential anti-microbial agent target. Int J Parasitol 2004; 34:297–308 [View Article] [PubMed]
    [Google Scholar]
  96. Artz JD, Dunford JE, Arrowood MJ, Dong A, Chruszcz M et al. Targeting a uniquely nonspecific prenyl synthase with bisphosphonates to combat cryptosporidiosis. Chem Biol 2008; 15:1296–1306 [View Article] [PubMed]
    [Google Scholar]
  97. Widmer G, Lee Y, Hunt P, Martinelli A, Tolkoff M et al. Comparative genome analysis of two Cryptosporidium parvum isolates with different host range. Infect Genet Evol 2012; 12:1213–1221 [View Article] [PubMed]
    [Google Scholar]
  98. Guo Y, Tang K, Rowe LA, Li N, Roellig DM et al. Comparative genomic analysis reveals occurrence of genetic recombination in virulent Cryptosporidium hominis subtypes and telomeric gene duplications in Cryptosporidium parvum. BMC Genomics 2015; 16:320 [View Article] [PubMed]
    [Google Scholar]
  99. Bouzid M, Hunter PR, Chalmers RM, Tyler KM. Cryptosporidium pathogenicity and virulence. Clin Microbiol Rev 2013; 26:115–134 [View Article] [PubMed]
    [Google Scholar]
  100. Sateriale A, Šlapeta J, Baptista R, Engiles JB, Gullicksrud JA et al. A genetically tractable, natural mouse model of cryptosporidiosis offers insights into host protective immunity. Cell Host Microbe 2019; 26:135–146 [View Article] [PubMed]
    [Google Scholar]
  101. Nader JL, Mathers TC, Ward BJ, Pachebat JA, Swain MT et al. Evolutionary genomics of anthroponosis in Cryptosporidium. Nat Microbiol 2019; 4:826–836 [View Article] [PubMed]
    [Google Scholar]
  102. Xiao L, Fayer R, Ryan U, Upton SJ. Cryptosporidium taxonomy: recent advances and implications for public health. Clin Microbiol Rev 2004; 17:72–97 [View Article] [PubMed]
    [Google Scholar]
  103. Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol 2021; 39:1348–1365 [View Article] [PubMed]
    [Google Scholar]
  104. Rhoads A, Au KF. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 2015; 13:278–289 [View Article] [PubMed]
    [Google Scholar]
  105. Menon VK, Okhuysen PC, Chappell CL, Mahmoud M, Mahmoud M et al. Fully resolved assembly of Cryptosporidium parvum. Gigascience 2022; 11:giac010 [View Article] [PubMed]
    [Google Scholar]
  106. Cui Z, Dong H, Wang R, Jian F, Zhang S et al. A canine model of experimental infection with Cryptosporidium canis. Exp Parasitol 2018; 195:19–23 [View Article] [PubMed]
    [Google Scholar]
  107. Scorza AV, Tyrrell P, Wennogle S, Chandrashekar R, Lappin MR. Experimental infection of cats with Cryptosporidium felis. J Feline Med Surg 2022; 24:1060–1064 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001052
Loading
/content/journal/mgen/10.1099/mgen.0.001052
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error