Skip to content
1887

Abstract

While fleas are often perceived simply as a biting nuisance and a cause of allergic dermatitis, they represent important disease vectors worldwide, especially for bacterial zoonoses such as plague (transmitted by rodent fleas) and some of the rickettsioses and bartonelloses. The cosmopolitan cat () and dog () fleas, as well as (restricted to tropical and subtropical Asia), breed in human dwellings and are vectors of cat-scratch fever (caused by spp.) and spp., including (agent of flea-borne spotted fever) and , a suspected pathogen. These spp. are members of a phylogenetic clade known as the ‘transitional group’, which includes both human pathogens and arthropod-specific endosymbionts. The relatively depauperate flea microbiome can also contain other endosymbionts, including a diverse range of strains. Here, we present circularized genome assemblies for two -derived pathogens ( and ) from Malaysia, a novel strain (Cori), and the mitochondrion; all were obtained by direct metagenomic sequencing of flea tissues. Moreover, we isolated two strains from Malaysian into tick cell culture and recovered circularized genome assemblies for both, one of which (CfeF) is newly sequenced. We demonstrate that the three strains are representatives of different major clades (‘supergroups’), two of which appear to be flea-specific. These genomes exhibit unique combinations of features associated with reproductive parasitism or mutualism, including prophage WO, cytoplasmic incompatibility factors and the biotin operon of obligate intracellular microbes. The first circularized assembly for includes a plasmid with a markedly different structure and gene content compared to the published plasmid; moreover, this novel plasmid was also detected in cat flea metagenomes from the USA. Analysis of loci under positive selection in the transitional group revealed genes involved in host–pathogen interactions that may facilitate host switching. Finally, the first genome from Asia exhibited large-scale genome stability compared to isolates from other continents, except for SNPs in regions predicted to mediate interactions with the vertebrate host. These findings highlight the paucity of data on the genomic diversity of -associated bacteria and raise questions regarding how interactions between members of the flea microbiome might influence vector competence.

Funding
This study was supported by the:
  • New England Biolabs (Award NA)
    • Principle Award Recipient: AmitSinha
  • New England Biolabs (Award NA)
    • Principle Award Recipient: ClotildeK. S. Carlow
  • Marie Skłodowska Curie Grant (Award H2020 MSCA ITN 2015 675752)
    • Principle Award Recipient: AlexandraBeliavskaia
  • Wellcome Trust (Award 223743/Z/21/Z)
    • Principle Award Recipient: NotApplicable
  • UK Biotechnology and Biological Sciences Research Council (BBSRC) (Award BB/P024270/1)
    • Principle Award Recipient: NotApplicable
  • UK Biotechnology and Biological Sciences Research Council (BBSRC) (Award BB/P024378/1)
    • Principle Award Recipient: NotApplicable
  • Ministry of Higher Education, Malaysia (Award MO002-2019)
    • Principle Award Recipient: NotApplicable
  • Newton Fund (Award 332192305)
    • Principle Award Recipient: NotApplicable
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001045
2023-07-03
2025-02-10
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/7/mgen001045.html?itemId=/content/journal/mgen/10.1099/mgen.0.001045&mimeType=html&fmt=ahah

References

  1. Beliavskaia A, Tan K-K, Sinha A, Husin NA, Lim FS et al.Metagenomics of culture isolates and insect tissue illuminate the evolution of Wolbachia, Rickettsia and Bartonella symbionts in Ctenocephalides spp. fleas Figshare 2023 https://doi.org/10.6084/m9.figshare.22699888.v1
    [Google Scholar]
  2. Iannino F, Sulli N, Maitino A, Pascucci I, Pampiglione G et al. Fleas of dog and cat: species, biology and Flea-borne diseases. Veterinaria Italia 2017; 53:277–288 [View Article]
    [Google Scholar]
  3. Lawrence AL, Webb CE, Clark NJ, Halajian A, Mihalca AD et al. Out-of-Africa, human-mediated dispersal of the common cat flea, Ctenocephalides felis: the hitchhiker’s guide to world domination. Int J Parasitol 2019; 49:321–336 [View Article] [PubMed]
    [Google Scholar]
  4. Beaucournu JC, Ménier K. The genus Ctenocephalides Stiles and Collins, 1930 (Siphonaptera, Pulicidae). Parasite 1998; 5:3–16 [View Article] [PubMed]
    [Google Scholar]
  5. Lawrence AL, Brown GK, Peters B, Spielman DS, Morin-Adeline V et al. High phylogenetic diversity of the cat flea (Ctenocephalides felis) at two mitochondrial DNA markers. Med Vet Entomol 2014; 28:330–336 [View Article] [PubMed]
    [Google Scholar]
  6. Eisen RJ, Eisen L, Gage KL. Studies of vector competency and efficiency of North American fleas for Yersinia pestis: state of the field and future research needs. J Med Entomol 2009; 46:737–744 [View Article] [PubMed]
    [Google Scholar]
  7. Anstead GM. History, rats, fleas, and opossums. II. The decline and resurgence of flea-borne typhus in the United States, 1945–2019. Trop Med Infect Dis 2021; 6:2 [View Article]
    [Google Scholar]
  8. Chomel BB, Kasten RW. Bartonellosis, an increasingly recognized zoonosis. J Appl Microbiol 2010; 109:743–750 [View Article] [PubMed]
    [Google Scholar]
  9. Sander A, Zagrosek A, Bredt W, Schiltz E, Piémont Y et al. Characterization of Bartonella clarridgeiae flagellin (FlaA) and detection of antiflagellin antibodies in patients with lymphadenopathy. J Clin Microbiol 2000; 38:2943–2948 [View Article] [PubMed]
    [Google Scholar]
  10. Iwaki-Egawa S, Ihler GM. Comparison of the abilities of proteins from Bartonella bacilliformis and Bartonella henselae to deform red cell membranes and to bind to red cell ghost proteins. FEMS Microbiol Lett 1997; 157:207–217 [View Article] [PubMed]
    [Google Scholar]
  11. Scherer DC, DeBuron-Connors I, Minnick MF. Characterization of Bartonella bacilliformis flagella and effect of antiflagellin antibodies on invasion of human erythrocytes. Infect Immun 1993; 61:4962–4971 [View Article] [PubMed]
    [Google Scholar]
  12. Vieira-Damiani G, Diniz PPV de P, Pitassi LHU, Sowy S, Scorpio DG et al. Bartonella clarridgeiae bacteremia detected in an asymptomatic blood donor. J Clin Microbiol 2015; 53:352–356 [View Article] [PubMed]
    [Google Scholar]
  13. Logan JMJ, Hall JL, Chalker VJ, O’Connell B, Birtles RJ. Bartonella clarridgeiae infection in a patient with aortic root abscess and endocarditis. Access Microbiol 2019; 1:e000064 [View Article] [PubMed]
    [Google Scholar]
  14. Engel P, Salzburger W, Liesch M, Chang C-C, Maruyama S et al. Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella. PLoS Genet 2011; 7:e1001296 [View Article] [PubMed]
    [Google Scholar]
  15. Mawuntu AHP, Johar E, Anggraeni R, Feliana F, Bernadus JBB et al. Rickettsia felis identified in two fatal cases of acute meningoencephalitis. PLoS Negl Trop Dis 2020; 14:e0007893 [View Article] [PubMed]
    [Google Scholar]
  16. Edouard S, Bhengsri S, Dowell SF, Watt G, Parola P et al. Two human cases of Rickettsia felis infection, Thailand. Emerg Infect Dis 2014; 20:1780–1781 [View Article] [PubMed]
    [Google Scholar]
  17. Williams M, Izzard L, Graves SR, Stenos J, Kelly JJ. First probable Australian cases of human infection with Rickettsia felis (cat‐flea typhus). Med J Aust 2011; 194:41–43 [View Article]
    [Google Scholar]
  18. Zavala-Castro J, Zavala-Velázquez J, Walker D, Pérez-Osorio J, Peniche-Lara G. Severe human infection with Rickettsia felis associated with hepatitis in Yucatan, Mexico. Int J Med Microbiol 2009; 299:529–533 [View Article] [PubMed]
    [Google Scholar]
  19. Gillespie JJ, Beier MS, Rahman MS, Ammerman NC, Shallom JM et al. Plasmids and rickettsial evolution: insight from Rickettsia felis. PLoS One 2007; 2:e266 [View Article] [PubMed]
    [Google Scholar]
  20. Maina AN, Jiang J, Luce-Fedrow A, St John HK, Farris CM et al. Worldwide presence and features of flea-borne Rickettsia asembonensis. Front Vet Sci 2018; 5:334 [View Article] [PubMed]
    [Google Scholar]
  21. Luce-Fedrow A, Maina AN, Otiang E, Ade F, Omulo S et al. Isolation of candidatus Rickettsia asemboensis from Ctenocephalides fleas. Vector Borne Zoonotic Dis 2015; 15:268–277 [View Article] [PubMed]
    [Google Scholar]
  22. Kho KL, Tay ST. Identification of rickettsial infections (Rickettsia sp. TH2014) in Ctenocephalides orientis fleas (Siphonaptera: Pulicidae). J Med Entomol 2019; 56:526–532 [View Article] [PubMed]
    [Google Scholar]
  23. Maina AN, Luce-Fedrow A, Omulo S, Hang J, Chan T-C et al. Isolation and characterization of a novel Rickettsia species (Rickettsia asembonensis sp. nov.) obtained from cat fleas (Ctenocephalides felis). Int J Syst Evol Microbiol 2016; 66:4512–4517 [View Article] [PubMed]
    [Google Scholar]
  24. Gillespie JJ, Joardar V, Williams KP, Driscoll T, Hostetler JB et al. A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle. J Bacteriol 2012; 194:376–394 [View Article]
    [Google Scholar]
  25. Manvell C, Berman H, Callahan B, Breitschwerdt E, Swain W et al. Identification of microbial taxa present in Ctenocephalides felis (cat flea) reveals widespread co-infection and associations with vector phylogeny. Parasit Vectors 2022; 15:398 [View Article] [PubMed]
    [Google Scholar]
  26. Lawrence AL, Hii S-F, Chong R, Webb CE, Traub R et al. Evaluation of the bacterial microbiome of two flea species using different DNA-isolation techniques provides insights into flea host ecology. FEMS Microbiol Ecol 2015; 91:fiv134 [View Article] [PubMed]
    [Google Scholar]
  27. Vasconcelos EJR, Billeter SA, Jett LA, Meinersmann RJ, Barr MC et al. Assessing cat flea microbiomes in Northern and Southern california by 16S rRNA next-generation sequencing. Vector Borne Zoonotic Dis 2018; 18:491–499 [View Article] [PubMed]
    [Google Scholar]
  28. Jones RT, Borchert J, Eisen R, MacMillan K, Boegler K et al. Flea-associated bacterial communities across an environmental transect in a plague-endemic region of Uganda. PLoS One 2015; 10:e0141057 [View Article] [PubMed]
    [Google Scholar]
  29. Ma WJ, Vavre F, Beukeboom LW. Manipulation of arthropod sex determination by endosymbionts: diversity and molecular mechanisms. Sex Dev 2014; 8:59–73 [View Article] [PubMed]
    [Google Scholar]
  30. Flatau R, Segoli M, Hawlena H. Wolbachia endosymbionts of fleas occur in all females but rarely in males and do not show evidence of obligatory relationships, fitness effects, or sex-distorting manipulations. Front Microbiol 2021; 12:649248 [View Article] [PubMed]
    [Google Scholar]
  31. Zurita A, CallejÓN R, De Rojas M, Halajian ALI, Cutillas C. Ctenocephalides felis and Ctenocephalides canis: introgressive hybridization. Syst Entomol 2016; 41:567–579 [View Article]
    [Google Scholar]
  32. Gerth M, Gansauge M-T, Weigert A, Bleidorn C. Phylogenomic analyses uncover origin and spread of the Wolbachia pandemic. Nat Commun 2014; 5:5117 [View Article] [PubMed]
    [Google Scholar]
  33. Driscoll TP, Verhoeve VI, Gillespie JJ, Johnston JS, Guillotte ML et al. A chromosome-level assembly of the cat flea genome uncovers rampant gene duplication and genome size plasticity. BMC Biol 2020; 18: [View Article]
    [Google Scholar]
  34. Driscoll TP, Verhoeve VI, Brockway C, Shrewsberry DL, Plumer M et al. Evolution of Wolbachia mutualism and reproductive parasitism: insight from two novel strains that co-infect cat fleas. PeerJ 2020; 8:e10646 [View Article]
    [Google Scholar]
  35. Bordenstein SR, Bordenstein SR, Matic I. Widespread phages of endosymbionts: phage WO genomics and the proposed taxonomic classification of Symbioviridae. PLoS Genet 2022; 18:e1010227 [View Article]
    [Google Scholar]
  36. Bordenstein SR, Bordenstein SR. Eukaryotic association module in phage WO genomes from Wolbachia. Nat Commun 2016; 7: [View Article]
    [Google Scholar]
  37. Khoo JJ, Kurtti TJ, Husin NA, Beliavskaia A, Lim FS et al. Isolation and propagation of laboratory strains and a novel flea-derived field strain of Wolbachia in tick cell lines. Microorganisms 2020; 8:988 [View Article] [PubMed]
    [Google Scholar]
  38. Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M et al. Evolutionary origin of insect– Wolbachia nutritional mutualism. Proc Natl Acad Sci 2014; 111:10257–10262 [View Article]
    [Google Scholar]
  39. Kho KL, Koh FX, Hasan LIM, Wong LP, Kisomi MG et al. Rickettsial seropositivity in the indigenous community and animal farm workers, and vector surveillance in Peninsular Malaysia. Emerg Microbes Infect 2017; 6:1–9 [View Article]
    [Google Scholar]
  40. Munderloh UG, Liu Y, Wang M, Chen C, Kurtti TJ. Establishment, maintenance and description of cell lines from the tick Ixodes scapularis. J Parasitol 1994; 80:533 [View Article]
    [Google Scholar]
  41. Alberdi MP, Nijhof AM, Jongejan F, Bell-Sakyi L. Tick cell culture isolation and growth of Rickettsia raoultii from Dutch Dermacentor reticulatus ticks. Ticks Tick Borne Dis 2012; 3:349–354 [View Article] [PubMed]
    [Google Scholar]
  42. Pratt H, Stojanovich C. Fleas: Illustrated key to species found during plague investigations. In CDC Pictorial Keys, Arthropods, Reptiles, Birds and Mammals of Public Health Significance US Department of Health Education and Welfare. Public Health Service Reprinted in; 1992 pp 171–174
    [Google Scholar]
  43. Stenos J, Graves SR, Unsworth NB. A highly sensitive and specific real-time PCR assay for the detection of spotted fever and typhus group rickettsiae. Am J Trop Med Hyg 2005; 73:1083–1085 [View Article] [PubMed]
    [Google Scholar]
  44. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011; 17:10 [View Article]
    [Google Scholar]
  45. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol 2019; 20:257 [View Article] [PubMed]
    [Google Scholar]
  46. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  47. Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol 2021; 38:4647–4654 [View Article] [PubMed]
    [Google Scholar]
  48. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 2017; 27:737–746 [View Article] [PubMed]
    [Google Scholar]
  49. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  50. Ferreira FC, Fonseca DM, Hamilton G, Price D. Metagenomic analysis of human-biting cat fleas in urban northeastern United States of America reveals an emerging zoonotic pathogen. Sci Rep 2020; 10:15611 [View Article] [PubMed]
    [Google Scholar]
  51. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res 2017; 27:824–834 [View Article] [PubMed]
    [Google Scholar]
  52. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  53. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research 2007; 35:W182–W185 [View Article]
    [Google Scholar]
  54. Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci 2020; 29:28–35 [View Article] [PubMed]
    [Google Scholar]
  55. Varani AM, Siguier P, Gourbeyre E, Charneau V, Chandler M. ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biol 2011; 12:R30 [View Article]
    [Google Scholar]
  56. Cabanettes F, Klopp C. D-GENIES: dot plot large genomes in an interactive, efficient and simple way. PeerJ 2018; 6:e4958 [View Article] [PubMed]
    [Google Scholar]
  57. Li H, Birol I. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article]
    [Google Scholar]
  58. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010; 5:e11147 [View Article] [PubMed]
    [Google Scholar]
  59. Krzywinski M, Schein J, Birol İ, Connors J, Gascoyne R et al. Circos: an information aesthetic for comparative genomics. Genome Res 2009; 19:1639–1645 [View Article]
    [Google Scholar]
  60. Rasche H, Hiltemann S. Galactic Circos: user-friendly Circos plots within the Galaxy platform. Gigascience 2020; 9:giaa065 [View Article] [PubMed]
    [Google Scholar]
  61. de Koning W, Miladi M, Hiltemann S, Heikema A, Hays JP et al. NanoGalaxy: Nanopore long-read sequencing data analysis in Galaxy. Gigascience 2020; 9:giaa105 [View Article] [PubMed]
    [Google Scholar]
  62. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R et al. The PATRIC bioinformatics resource center: expanding data and analysis capabilities. Nucleic Acids Res 2020; 48:D606–D612 [View Article] [PubMed]
    [Google Scholar]
  63. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article] [PubMed]
    [Google Scholar]
  64. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article] [PubMed]
    [Google Scholar]
  65. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [View Article] [PubMed]
    [Google Scholar]
  66. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007; 56:564–577 [View Article] [PubMed]
    [Google Scholar]
  67. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article]
    [Google Scholar]
  68. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  69. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the Ultrafast Bootstrap Approximation. Mol Biol Evol 2018; 35:518–522 [View Article]
    [Google Scholar]
  70. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21 [View Article]
    [Google Scholar]
  71. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001; 17:754–755 [View Article] [PubMed]
    [Google Scholar]
  72. Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 2011; 27:1164–1165 [View Article] [PubMed]
    [Google Scholar]
  73. Martinez J, Klasson L, Welch JJ, Jiggins FM. Life and death of selfish genes: comparative genomics reveals the dynamic evolution of cytoplasmic incompatibility. Mol Biol Evol 2021; 38:2–15 [View Article] [PubMed]
    [Google Scholar]
  74. Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res 2021; 49:D458–D460 [View Article]
    [Google Scholar]
  75. Sievers F, Higgins DG. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci 2018; 27:135–145 [View Article] [PubMed]
    [Google Scholar]
  76. Liu W, Xie Y, Ma J, Luo X, Nie P et al. IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics 2015; 31:3359–3361 [View Article]
    [Google Scholar]
  77. Guy L, Roat Kultima J, Andersson SGE. genoPlotR: comparative gene and genome visualization in R. Bioinformatics 2010; 26:2334–2335 [View Article]
    [Google Scholar]
  78. Löytynoja A. Phylogeny-aware alignment with PRANK. In Russell DJ. eds Multiple Sequence Alignment Methods Totowa, NJ: Humana Press; 2014 pp 155–170
    [Google Scholar]
  79. Smith MD, Wertheim JO, Weaver S, Murrell B, Scheffler K et al. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol Biol Evol 2015; 32:1342–1353 [View Article]
    [Google Scholar]
  80. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 2021; 38:5825–5829 [View Article] [PubMed]
    [Google Scholar]
  81. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V et al. Twelve years of SAMtools and BCFtools. Gigascience 2021; 10:giab008 [View Article] [PubMed]
    [Google Scholar]
  82. Warren RL, Coombe L, Mohamadi H, Zhang J, Jaquish B et al. ntEdit: scalable genome sequence polishing. Bioinformatics 2019; 35:4430–4432 [View Article] [PubMed]
    [Google Scholar]
  83. Donath A, Jühling F, Al-Arab M, Bernhart SH, Reinhardt F et al. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res 2019; 47:10543–10552 [View Article] [PubMed]
    [Google Scholar]
  84. Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol 2010; 10:210 [View Article] [PubMed]
    [Google Scholar]
  85. Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B et al. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol 2020; 37:291–294 [View Article] [PubMed]
    [Google Scholar]
  86. Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011; 12:402 [View Article] [PubMed]
    [Google Scholar]
  87. Gilchrist CLM, Chooi Y-H. clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 2021; 37:2473–2475 [View Article] [PubMed]
    [Google Scholar]
  88. Bell-Sakyi L, Beliavskaia A, Hartley CS, Jones L, Luu L et al. Isolation in natural host cell lines of Wolbachia strains wPip from the mosquito Culex pipiens and wPap from the sand fly Phlebotomus papatasi. Insects 2021; 12:871 [View Article]
    [Google Scholar]
  89. Dudzic JP, Curtis CI, Gowen BE, Perlman SJ. A highly divergent Wolbachia with a tiny genome in an insect-parasitic tylenchid nematode. Proc R Soc B 2022; 289:1983 [View Article]
    [Google Scholar]
  90. Sinha A, Li Z, Poole CB, Ettwiller L, Lima NF et al. Multiple lineages of nematode-Wolbachia symbiosis in supergroup F and convergent loss of bacterioferritin in filarial Wolbachia. Genome Biol Evolevad073 2023; 15 [View Article] [PubMed]
    [Google Scholar]
  91. Mahmood S, Nováková E, Martinů J, Sychra O, Hypša V. Extremely reduced supergroup F Wolbachia: transition to obligate insect symbionts. Microbiome 2021; 11: [View Article] [PubMed]
    [Google Scholar]
  92. Martinez J, Ant TH, Murdochy SM, Tong L, da Silva Filipe A et al. Genome sequencing and comparative analysis of Wolbachia strain wAlbA reveals Wolbachia-associated plasmids are common. PLoS Genet 2022; 18:e1010406 [View Article] [PubMed]
    [Google Scholar]
  93. Tay ST, Koh FX, Kho KL, Sitam FT. Rickettsial Infections in Monkeys, Malaysia. Emerg Infect Dis 2015; 21:545–547 [View Article]
    [Google Scholar]
  94. Low VL, Azhar SS, Tan TK, Bathmanaban P, AbuBakar S et al. First report of Rickettsia asembonensis in small ruminants. Vet Res Commun 2022; 46:985–986 [View Article] [PubMed]
    [Google Scholar]
  95. Parola P, Sanogo OY, Lerdthusnee K, Zeaiter Z, Chauvancy G et al. Identification of Rickettsia spp. and Bartonella spp. in ffrom the Thai-Myanmar border. Ann N Y Acad Sci 2003; 990:173–181 [View Article] [PubMed]
    [Google Scholar]
  96. Kho KL, Koh FX, Singh HKL, Zan HAM, Kukreja A et al. Spotted fever group Rickettsioses and murine typhus in a Malaysian teaching hospital. Am J Trop Med Hyg 2016; 95:765–768 [View Article] [PubMed]
    [Google Scholar]
  97. Gillespie JJ, Driscoll TP, Verhoeve VI, Utsuki T, Husseneder C et al. Genomic diversification in strains of Rickettsia felis isolated from different arthropods. Genome Biol Evol 2015; 7:35–56 [View Article]
    [Google Scholar]
  98. Hagen R, Verhoeve VI, Gillespie JJ, Driscoll TP, Martinez-Romero E. Conjugative transposons and their cargo genes vary across natural populations of Rickettsia buchneri infecting the tick Ixodes scapularis. Genome Biol Evol 2018; 10:3218–3229 [View Article]
    [Google Scholar]
  99. Davison HR, Pilgrim J, Wybouw N, Parker J, Pirro S et al. Genomic diversity across the Rickettsia and ‘Candidatus Megaira’ genera and proposal of genus status for the Torix group. Nat Commun 2022; 13: [View Article]
    [Google Scholar]
  100. El Karkouri K, Ghigo E, Raoult D, Fournier P-E. Genomic evolution and adaptation of arthropod-associated Rickettsia. Sci Rep 2022; 12:3807 [View Article] [PubMed]
    [Google Scholar]
  101. Verhoeve VI, Plumer ML, Driscoll TP, Macaluso KR, Azad AF et al. The complete mitochondrial genome of the cat flea, Ctenocephalides felis. Mitochondrial DNA B Resour 2020; 5:3422–3424 [View Article] [PubMed]
    [Google Scholar]
  102. Zhang Y, Fu Y-T, Yao C, Deng Y-P, Nie Y et al. Mitochondrial phylogenomics provides insights into the taxonomy and phylogeny of fleas. Parasit Vectors 2022; 15:223 [View Article] [PubMed]
    [Google Scholar]
  103. van der Mescht L, Matthee S, Matthee CA. New taxonomic and evolutionary insights relevant to the cat flea, Ctenocephalides felis: a geographic perspective. Mol Phylogenet Evol 2021; 155:106990 [View Article] [PubMed]
    [Google Scholar]
  104. Ashwini MS, Puttalakshmamma GC, Mamatha GS, Chandranaik BM, Thimmareddy PM et al. Studies on morphology and molecular characterization of oriental cat Flea infesting small ruminants by barcoding. J Entomol Zool Stud 2017; 5:301–305
    [Google Scholar]
  105. Casiraghi M, Bordenstein SR, Baldo L, Lo N, Beninati T et al. Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology 2005; 151:4015–4022 [View Article]
    [Google Scholar]
  106. Ferri E, Bain O, Barbuto M, Martin C, Lo N et al. New insights into the evolution of Wolbachia infections in filarial nematodes inferred from a large range of screened species. PLoS One 2011; 6:e20843 [View Article] [PubMed]
    [Google Scholar]
  107. Dittmar K, Whiting MF. New Wolbachia endosymbionts from nearctic and neotropical fleas (Siphonaptera). J Parasitol 2004; 90:953–957 [View Article] [PubMed]
    [Google Scholar]
  108. Tay ST. Wolbachia endosymbionts, Rickettsia felis and Bartonella species, in Ctenocephalides felis fleas in a tropical region. J Vector Ecol 2013; 38:200–202 [View Article] [PubMed]
    [Google Scholar]
  109. Moore C, Breitschwerdt EB, Kim L, Li Y, Ferris K et al. The association of host and vector characteristics with Ctenocephalides felis pathogen and endosymbiont infection. Front Microbiol 2023; 14:1137059 [View Article] [PubMed]
    [Google Scholar]
  110. Moore C, Lashnits E, Neupane P, Herrin BH, Lappin M et al. Feeding on a Bartonella henselae infected host triggers temporary changes in the Ctenocephalides felis microbiome. Pathogens 2023; 12:366 [View Article]
    [Google Scholar]
  111. Gorham CH, Fang QQ, Durden LA. Wolbachia endosymbionts in fleas (Siphonaptera). J Parasitol 2003; 89:283–289 [View Article] [PubMed]
    [Google Scholar]
  112. Bandi C, Anderson TJC, Genchi C, Blaxter ML. Phylogeny of Wolbachia in filarial nematodes. Proc R Soc Lond B 1998; 265:2407–2413 [View Article]
    [Google Scholar]
  113. Lefoulon E, Bain O, Makepeace BL, d’Haese C, Uni S et al. Breakdown of coevolution between symbiotic bacteria Wolbachia and their filarial hosts. PeerJ 2016; 4:e1840 [View Article] [PubMed]
    [Google Scholar]
  114. Balvín O, Roth S, Talbot B, Reinhardt K. Co-speciation in bedbug Wolbachia parallel the pattern in nematode hosts. Sci Rep 2018; 8:8797 [View Article] [PubMed]
    [Google Scholar]
  115. Filée J, Agésilas-Lequeux K, Lacquehay L, Bérenger JM, Dupont L. Wolbachia genomics reveals a potential for a nutrition-based symbiosis in blood-sucking Triatomine bugs. bioRxiv2022 2022 [View Article]
    [Google Scholar]
  116. Huigens ME, de Almeida RP, Boons PAH, Luck RF, Stouthamer R. Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc Biol Sci 2004; 271:509–515 [View Article] [PubMed]
    [Google Scholar]
  117. Li S-J, Ahmed MZ, Lv N, Shi P-Q, Wang X-M et al. Plantmediated horizontal transmission of Wolbachia between whiteflies. ISME J 2017; 11:1019–1028 [View Article] [PubMed]
    [Google Scholar]
  118. Brown AN, Lloyd VK. Evidence for horizontal transfer of Wolbachia by a Drosophila mite. Exp Appl Acarol 2015; 66:301–311 [View Article] [PubMed]
    [Google Scholar]
  119. Ahmed MZ, Li S-J, Xue X, Yin X-J, Ren S-X et al. The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLOS Pathog 2015; 10:e1004672 [View Article] [PubMed]
    [Google Scholar]
  120. Palacios-Salvatierra R, Cáceres-Rey O, Vásquez-Domínguez A, Mosquera-Visaloth P, Anaya-Ramírez E. Rickettsial species in human cases with non-specific acute febrile syndrome in Peru. Rev Peru Med Exp Salud Publica 2018; 35:630–635 [View Article] [PubMed]
    [Google Scholar]
  121. Moonga LC, Hayashida K, Mulunda NR, Nakamura Y, Chipeta J et al. Molecular detection and characterization of Rickettsia asembonensis in human blood, Zambia. Emerg Infect Dis 2021; 27:2237–2239 [View Article]
    [Google Scholar]
  122. Khan SA, Saikia J, Bora T, Khamo V, Rahi M. Rickettsiae in fleas infesting domestic pets of eastern Himalayan terrains of India. Trans R Soc Trop Med Hyg 2022; 116:595–598 [View Article]
    [Google Scholar]
  123. Betancourt-Ruiz P, Martínez-Díaz H-C, Gil-Mora J, Ospina C, Olaya-M L-A et al. Candidatus Rickettsia senegalensis in cat fleas (Siphonaptera: Pulicidae) collected from dogs and cats in Cauca, Colombia. J Med Entomol 2020; 57:382–387 [View Article] [PubMed]
    [Google Scholar]
  124. Cevidanes A, Di Cataldo S, Vera F, Lillo P, Millán J. Molecular detection of vector-borne pathogens in rural dogs and associated Ctenocephalides felis fleas (Siphonaptera: Pulicidae) in Easter Island (Chile). J Med Entomol 2018; 55:1659–1663 [View Article]
    [Google Scholar]
  125. Mullins KE, Maina AN, Krueger L, Jiang J, Cummings R et al. Rickettsial infections among cats and cat fleas in Riverside County, California. Am J Trop Med Hyg 2018; 99:291–296 [View Article] [PubMed]
    [Google Scholar]
  126. Kikuchi Y, Sameshima S, Kitade O, Kojima J, Fukatsu T. Novel clade of Rickettsia spp. from leeches. Appl Environ Microbiol 2002; 68:999–1004 [View Article] [PubMed]
    [Google Scholar]
  127. Mediannikov O, Bechah Y, Amanzougaghene N, Lepidi H, Bassene H et al. Booklice Liposcelis bostrychophila naturally infected by Rickettsia felis cause fever and experimental pneumonia in mammals. J Infect Dis 2022; 226:1075–1083 [View Article] [PubMed]
    [Google Scholar]
  128. Lamason RL, Bastounis E, Kafai NM, Serrano R, del Álamo JC et al. Rickettsia Sca4 reduces vinculin-mediated intercellular tension to promote spread. Cell 2016; 167:670–683 [View Article]
    [Google Scholar]
  129. Sanderlin AG, Hanna RE, Lamason RL. The ankyrin repeat protein RARP-1 is a periplasmic factor that supports Rickettsia parkeri growth and host cell invasion. J Bacteriol 2022; 204:e0018222 [View Article] [PubMed]
    [Google Scholar]
  130. Köseoğlu AE, Can H, Güvendi M, Karakavuk M, Manyatsi P et al. Molecular prevalence and genetic diversity of Bartonella spp. in stray cats of İzmir, Turkey. Parasit Vectors 2022; 15: [View Article]
    [Google Scholar]
  131. Raimundo JM, Guimarães A, Amaro GM, Silva AT da, Rodrigues CJBC et al. Prevalence of Bartonella species in shelter cats and their ectoparasites in southeastern Brazil. Rev Bras Parasitol Vet 2022; 31: [View Article]
    [Google Scholar]
  132. Belkhiria J, Chomel BB, Ben Hamida T, Kasten RW, Stuckey MJ et al. Prevalence and potential risk factors for Bartonella infection in Tunisian stray dogs. Vector Borne Zoonotic Dis 2017; 17:388–397 [View Article] [PubMed]
    [Google Scholar]
  133. Huggins LG, Colella V, Atapattu U, Koehler AV, Traub RJ. Nanopore sequencing using the full-length 16S rRNA gene for detection of blood-borne bacteria in dogs reveals a novel species of hemotropic mycoplasma. Microbiol Spectr 2022; 10:e0308822 [View Article] [PubMed]
    [Google Scholar]
  134. Zarea AAK, Bezerra-Santos MA, Nguyen V-L, Colella V, Dantas-Torres F et al. Occurrence and bacterial loads of Bartonella and haemotropic Mycoplasma species in privately owned cats and dogs and their fleas from East and Southeast Asia. Zoonoses Public Health 2022; 69:704–720 [View Article] [PubMed]
    [Google Scholar]
  135. Saengsawang P, Kaewmongkol G, Phoosangwalthong P, Chimnoi W, Inpankaew T. Detection of zoonotic Bartonella species in ticks and fleas parasitizing free-ranging cats and dogs residing in temples of Bangkok, Thailand. Vet Parasitol Reg Stud Reports 2021; 25:100612 [View Article] [PubMed]
    [Google Scholar]
  136. Calvani NED, Bell L, Carney A, De La Fuente C, Stragliotto T et al. The molecular identity of fleas (Siphonaptera) carrying Rickettsia felis, Bartonella clarridgeiae and Bartonella rochalimae from dogs and cats in Northern Laos. Heliyon 2020; 6:e04385 [View Article] [PubMed]
    [Google Scholar]
  137. Schmid MC, Schulein R, Dehio M, Denecker G, Carena I et al. The VirB type IV secretion system of Bartonella henselae mediates invasion, proinflammatory activation and antiapoptotic protection of endothelial cells. Mol Microbiol 2004; 52:81–92 [View Article]
    [Google Scholar]
  138. Truttmann MC, Rhomberg TA, Dehio C. Combined action of the type IV secretion effector proteins BepC and BepF promotes invasome formation of Bartonella henselae on endothelial and epithelial cells. Cell Microbiol 2011; 13:284–299 [View Article] [PubMed]
    [Google Scholar]
  139. Harms A, Dehio C. Intruders below the radar: molecular pathogenesis of Bartonella spp. Clin Microbiol Rev 2012; 25:42–78 [View Article] [PubMed]
    [Google Scholar]
  140. Meuskens I, Saragliadis A, Leo JC, Linke D. Type V secretion systems: an overview of passenger domain functions. Front Microbiol 2019; 10:1163 [View Article] [PubMed]
    [Google Scholar]
  141. Riess T, Andersson SGE, Lupas A, Schaller M, Schäfer A et al. Bartonella adhesin A mediates a proangiogenic host cell response. J Exp Med 2004; 200:1267–1278 [View Article] [PubMed]
    [Google Scholar]
  142. MacKichan JK, Gerns HL, Chen Y-T, Zhang P, Koehler JE. A SacB mutagenesis strategy reveals that the Bartonella quintana variably expressed outer membrane proteins are required for bloodstream infection of the host. Infect Immun 2008; 76:788–795 [View Article] [PubMed]
    [Google Scholar]
  143. Litwin CM, Johnson JM. Identification, cloning, and expression of the CAMP-like factor autotransporter gene (cfa) of Bartonella henselae. Infect Immun 2005; 73:4205–4213 [View Article] [PubMed]
    [Google Scholar]
  144. Rio RVM, Attardo GM, Weiss BL. Grandeur alliances: symbiont metabolic integration and obligate arthropod hematophagy. Trends Parasitol 2016; 32:739–749 [View Article] [PubMed]
    [Google Scholar]
  145. Pornwiroon W, Kearney MT, Husseneder C, Foil LD, Macaluso KR. Comparative microbiota of Rickettsia felis-uninfected and -infected colonized cat fleas, Ctenocephalides felis. ISME J 2007; 1:394–402 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001045
Loading
/content/journal/mgen/10.1099/mgen.0.001045
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error