1887

Abstract

Carbapenem-resistant is a major cause of hospital-acquired infections and the fastest-growing pathogen in Europe. Carbapenem resistance was detected at the Consorcio Hospital General Universitario de Valencia (CHGUV) in early 2015, and there has been a significant increase in carbapenem-resistant isolates since then. In this study, we collected carbapenem-resistant isolates from this hospital during the period of increase (from 2015 to 2019) and studied how carbapenem-resistant isolates emerged and spread in the hospital. A total of 225 isolates were subjected to whole-genome sequencing with Illumina NextSeq. We characterized the isolates by identifying lineages and antimicrobial resistance genes and plasmids, especially those related to reduced carbapenem susceptibility. Our findings show that the initial carbapenem resistance emergence and dissemination at the CHGUV occurred during a short period of 1 year. Furthermore, it was complex, involving six different lineages of types ST307, ST11, ST101 and ST437, different resistance-determinant factors, including OXA-48, NDM-1, NDM-23 and DHA-1, and different plasmids.

Funding
This study was supported by the:
  • Conselleria de Sanitat Universal i Salut Pública
    • Principle Award Recipient: NerisGarcia-Gonzalez
  • Ministerio de Ciencia e Innovación (Award PID2021-127010OB-I00)
    • Principle Award Recipient: FernandoGonzalez-Candelas
  • Ministerio de Ciencia e Innovación (Award BFU2017-89594R)
    • Principle Award Recipient: FernandoGonzalez-Candelas
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001032
2023-06-05
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/6/mgen001032.html?itemId=/content/journal/mgen/10.1099/mgen.0.001032&mimeType=html&fmt=ahah

References

  1. Paczosa MK, Mecsas J. Klebsiella pneumoniae: Going on the offense with a strong defense. Microbiol Mol Biol Rev 2016; 80:629–661 [View Article] [PubMed]
    [Google Scholar]
  2. WHO publishes list of bacteria for which new antibiotics are urgently needed. n.d https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed accessed 28 March 2022
  3. Cassini A, Plachouras D, Monnet DL. Attributable deaths caused by infections with antibiotic-resistant bacteria in France - Authors’ reply. Lancet Infect Dis 2019; 19:129–130 [View Article] [PubMed]
    [Google Scholar]
  4. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 2018; 31:e00088-17 [View Article] [PubMed]
    [Google Scholar]
  5. Martirosov DM, Lodise TP. Emerging trends in epidemiology and management of infections caused by carbapenem-resistant Enterobacteriaceae. Diagn Microbiol Infect Dis 2016; 85:266–275 [View Article] [PubMed]
    [Google Scholar]
  6. Lee C-R, Lee JH, Park KS, Kim YB, Jeong BC et al. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: Epidemiology, genetic context, treatment options, and detection methods. Front Microbiol 2016; 7:895 [View Article] [PubMed]
    [Google Scholar]
  7. Oteo J, Saez D, Bautista V, Fernández-Romero S, Hernández-Molina JM et al. Carbapenemase-producing Enterobacteriaceae in Spain in 2012. Antimicrob Agents Chemother 2013; 57:6344–6347 [View Article]
    [Google Scholar]
  8. Hernández-García M, Pérez-Viso B, Navarro-San Francisco C, Baquero F, Morosini MI et al. Intestinal co-colonization with different carbapenemase-producing Enterobacterales isolates is not a rare event in an OXA-48 endemic area. EClinicalMedicine 2019; 15:72–79 [View Article] [PubMed]
    [Google Scholar]
  9. David S, Reuter S, Harris SR, Glasner C, Feltwell T et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol 2019; 4:1919–1929 [View Article]
    [Google Scholar]
  10. Oteo J, Ortega A, Bartolomé R, Bou G, Conejo C et al. Prospective multicenter study of carbapenemase-producing Enterobacteriaceae from 83 hospitals in Spain reveals high in vitro susceptibility to colistin and meropenem. Antimicrob Agents Chemother 2015; 59:3406–3412 [View Article] [PubMed]
    [Google Scholar]
  11. Fuster B, Salvador C, Tormo N, García-González N, Gimeno C et al. Molecular epidemiology and drug-resistance mechanisms in carbapenem-resistant Klebsiella pneumoniae isolated in patients from a tertiary hospital in Valencia, Spain. J Glob Antimicrob Resist 2020; 22:718–725 [View Article] [PubMed]
    [Google Scholar]
  12. Clinical & Laboratory Standards Institute: CLSI guidelines. In Clinical & Laboratory Standards Institute https://clsi.org/ accessed 28 March 2022
    [Google Scholar]
  13. Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18:268–281 [View Article] [PubMed]
    [Google Scholar]
  14. Babraham Bioinformatics - FastQC a quality control tool for high throughput sequence data. n.d https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ accessed 28 March 2022
  15. MultiQC. n.d https://multiqc.info/ accessed 28 March 2022
  16. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011; 27:863–864 [View Article]
    [Google Scholar]
  17. Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL et al. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun 2021; 12:4188 [View Article] [PubMed]
    [Google Scholar]
  18. Wick RR, Heinz E, Holt KE, Wyres KL, Diekema DJ. Kaptive web: user-friendly capsule and lipopolysaccharide serotype prediction for Klebsiella genomes. J Clin Microbiol 2018; 56:e00197–18 [View Article]
    [Google Scholar]
  19. Wyres KL, Wick RR, Gorrie C, Jenney A, Follador R et al. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb Genom 2016; 2:e000102 [View Article]
    [Google Scholar]
  20. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In Silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article]
    [Google Scholar]
  21. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  22. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  23. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  24. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol 2020; 21:180 [View Article] [PubMed]
    [Google Scholar]
  25. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [View Article] [PubMed]
    [Google Scholar]
  26. Borowiec ML. AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ 2016; 4:e1660
    [Google Scholar]
  27. Steenwyk JL, Buida T 3rd, Li Y, Shen X-X, Rokas A. ClipKIT: a multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biol 2020; 18:e3001007
    [Google Scholar]
  28. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  29. Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 2013; 30:1188–1195 [View Article] [PubMed]
    [Google Scholar]
  30. Letunic I. iTOL: Interactive Tree Of Life. n.d https://itol.embl.de/ accessed 28 March 2022
  31. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom 2016; 2:e000056 [View Article]
    [Google Scholar]
  32. Seemann T. GitHub - tseemann/snippy: Rapid haploid variant calling and core genome alignment. GitHub. n.d https://github.com/tseemann/snippy accessed 28 March 2022
  33. García-González N, Beamud B, Fuster B, Giner S, Domínguez MV et al. Tracking the emergence and dissemination of a blaNDM-23 gene in a multidrug resistance plasmid of Klebsiella pneumoniae. Microbiol Spectr 2023e0258522 [View Article] [PubMed]
    [Google Scholar]
  34. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES et al. Integrative genomics viewer. Nat Biotechnol 2011; 29:24–26 [View Article] [PubMed]
    [Google Scholar]
  35. Pérez-Vázquez M, Oteo J, García-Cobos S, Aracil B, Harris SR et al. Phylogeny, resistome and mobile genetic elements of emergent OXA-48 and OXA-245 Klebsiella pneumoniae clones circulating in Spain. J Antimicrob Chemother 2016; 71:887–896 [View Article]
    [Google Scholar]
  36. Fajardo-Lubián A, Ben Zakour NL, Agyekum A, Qi Q, Iredell JR. Host adaptation and convergent evolution increases antibiotic resistance without loss of virulence in a major human pathogen. PLoS Pathog 2019; 15:e1007218
    [Google Scholar]
  37. Hernández-García M, Pérez-Viso B, León-Sampedro R, Navarro-San Francisco C, López-Fresneña N et al. Outbreak of NDM-1+CTX-M-15+DHA-1-producing Klebsiella pneumoniae high-risk clone in Spain owing to an undetectable colonised patient from Pakistan. Int J Antimicrob Agents 2019; 54:233–239 [View Article] [PubMed]
    [Google Scholar]
  38. Gijón D, Tedim AP, Valverde A, Rodríguez I, Morosini M-I et al. Early OXA-48-producing isolates recovered in a Spanish hospital reveal a complex introduction dominated by sequence type 11 (ST11) and ST405 Klebsiella pneumoniae clones. mSphere 2020; 5:e00080-20 [View Article] [PubMed]
    [Google Scholar]
  39. Codjoe FS, Donkor ES. Carbapenem resistance: a review. Med Sci 2017; 6:1 [View Article] [PubMed]
    [Google Scholar]
  40. Fuster B, Tormo N, Salvador C, Gimeno C. Detection of two simultaneous outbreaks of Klebsiella pneumoniae coproducing OXA-48 and NDM-1 carbapenemases in a tertiary-care hospital in Valencia, Spain. New Microbes New Infect 2020; 34:100660 [View Article] [PubMed]
    [Google Scholar]
  41. Rivera-Izquierdo M, Láinez-Ramos-Bossini AJ, Rivera-Izquierdo C, López-Gómez J, Fernández-Martínez NF et al. OXA-48 carbapenemase-producing Enterobacterales in Spanish hospitals: an updated comprehensive review on a rising antimicrobial resistance. Antibiotics 2021; 10:89 [View Article] [PubMed]
    [Google Scholar]
  42. Pérez-Vázquez M, Sola Campoy PJ, Ortega A, Bautista V, Monzón S et al. Emergence of NDM-producing Klebsiella pneumoniae and Escherichia coli in Spain: Phylogeny, resistome, virulence and plasmids encoding blaNDM-like genes as determined by WGS. J Antimicrob Chemother 2019; 74:3489–3496 [View Article] [PubMed]
    [Google Scholar]
  43. Pitout JDD, Peirano G, Kock MM, Strydom K-A, Matsumura Y. The global ascendency of OXA-48-type carbapenemases. Clin Microbiol Rev 2019; 33:e00102-19 [View Article] [PubMed]
    [Google Scholar]
  44. Poirel L, Bonnin RA, Nordmann P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother 2012; 56:559–562 [View Article] [PubMed]
    [Google Scholar]
  45. Nordmann P, Poirel L, Walsh TR, Livermore DM. The emerging NDM carbapenemases. Trends Microbiol 2011; 19:588–595 [View Article] [PubMed]
    [Google Scholar]
  46. Adler M, Anjum M, Andersson DI, Sandegren L. Influence of acquired β-lactamases on the evolution of spontaneous carbapenem resistance in Escherichia coli. J Antimicrob Chemother 2013; 68:51–59 [View Article] [PubMed]
    [Google Scholar]
  47. Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. Nat Rev Microbiol 2020; 18:344–359 [View Article] [PubMed]
    [Google Scholar]
  48. Peirano G, Chen L, Kreiswirth BN, Pitout JDD. Emerging antimicrobial-resistant high-risk Klebsiella pneumoniae clones ST307 and ST147. Antimicrob Agents Chemother 2020; 64:e01148-20 [View Article] [PubMed]
    [Google Scholar]
  49. David S, Cohen V, Reuter S, Sheppard AE, Giani T et al. Integrated chromosomal and plasmid sequence analyses reveal diverse modes of carbapenemase gene spread among Klebsiella pneumoniae. Proc Natl Acad Sci 2020; 117:25043–25054 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001032
Loading
/content/journal/mgen/10.1099/mgen.0.001032
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error