1887

Abstract

The gut microbiota is a reservoir for antimicrobial resistance genes (ARGs). With current sequencing methods, it is difficult to assign ARGs to their microbial hosts, particularly if these ARGs are located on plasmids. Metagenomic chromosome conformation capture approaches (meta3C and Hi-C) have recently been developed to link bacterial genes to phylogenetic markers, thus potentially allowing the assignment of ARGs to their hosts on a microbiome-wide scale. Here, we generated a meta3C dataset of a human stool sample and used previously published meta3C and Hi-C datasets to investigate bacterial hosts of ARGs in the human gut microbiome. Sequence reads mapping to repetitive elements were found to cause problematic noise in, and may importantly skew interpretation of, meta3C and Hi-C data. We provide a strategy to improve the signal-to-noise ratio by discarding reads that map to insertion sequence elements and to the end of contigs. We also show the importance of using spike-in controls to quantify whether the cross-linking step in meta3C and Hi-C protocols has been successful. After filtering to remove artefactual links, 87 ARGs were assigned to their bacterial hosts across all datasets, including 27 ARGs in the meta3C dataset we generated. We show that commensal gut bacteria are an important reservoir for ARGs, with genes coding for aminoglycoside and tetracycline resistance being widespread in anaerobic commensals of the human gut.

Funding
This study was supported by the:
  • Medical Research Council (Award MR/N013913/1)
    • Principle Award Recipient: GregoryE. McCallum
  • Royal Society (Award WM160092)
    • Principle Award Recipient: van SchaikWillem
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001030
2023-06-05
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/6/mgen001030.html?itemId=/content/journal/mgen/10.1099/mgen.0.001030&mimeType=html&fmt=ahah

References

  1. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 2017; 35:833–844 [View Article]
    [Google Scholar]
  2. McInnes RS, McCallum GE, Lamberte LE, van Schaik W. Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Curr Opin Microbiol 2020; 53:35–43 [View Article] [PubMed]
    [Google Scholar]
  3. Meziti A, Rodriguez-R LM, Hatt JK, Peña-Gonzalez A, Levy K et al. The reliability of Metagenome-Assembled Genomes (MAGs) in representing natural populations: insights from comparing MAGs against isolate genomes derived from the same fecal sample. Appl Environ Microbiol 2021; 87:e02593-20 [View Article] [PubMed]
    [Google Scholar]
  4. Chen L, Zhao N, Cao J, Liu X, Xu J et al. Short- and long-read metagenomics expand individualized structural variations in gut microbiomes. Nat Commun 2022; 13:3175 [View Article]
    [Google Scholar]
  5. Bertrand D, Shaw J, Kalathiyappan M, Ng AHQ, Kumar MS et al. Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes. Nat Biotechnol 2019; 37:937–944 [View Article] [PubMed]
    [Google Scholar]
  6. Suzuki Y, Nishijima S, Furuta Y, Yoshimura J, Suda W et al. Long-read metagenomic exploration of extrachromosomal mobile genetic elements in the human gut. Microbiome 2019; 7:119 [View Article] [PubMed]
    [Google Scholar]
  7. Hu Y, Yang X, Qin J, Lu N, Cheng G et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat Commun 2013; 4:2151 [View Article] [PubMed]
    [Google Scholar]
  8. Ruppé E, Ghozlane A, Tap J, Pons N, Alvarez A-S et al. Prediction of the intestinal resistome by a three-dimensional structure-based method. Nat Microbiol 2019; 4:112–123 [View Article] [PubMed]
    [Google Scholar]
  9. Forster SC, Liu J, Kumar N, Gulliver EL, Gould JA et al. Strain-level characterization of broad host range mobile genetic elements transferring antibiotic resistance from the human microbiome. Nat Commun 2022; 13:1445 [View Article] [PubMed]
    [Google Scholar]
  10. Trobos M, Lester CH, Olsen JE, Frimodt-Møller N, Hammerum AM. Natural transfer of sulphonamide and ampicillin resistance between Escherichia coli residing in the human intestine. J Antimicrob Chemother 2009; 63:80–86 [View Article] [PubMed]
    [Google Scholar]
  11. Shoemaker NB, Vlamakis H, Hayes K, Salyers AA. Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl Environ Microbiol 2001; 67:561–568 [View Article]
    [Google Scholar]
  12. Lester CH, Frimodt-Møller N, Sørensen TL, Monnet DL, Hammerum AM. In vivo transfer of the vanA resistance gene from an Enterococcus faecium isolate of animal origin to an E. faecium isolate of human origin in the intestines of human volunteers. Antimicrob Agents Chemother 2006; 50:596–599 [View Article] [PubMed]
    [Google Scholar]
  13. Marbouty M, Koszul R. Metagenome analysis exploiting high-throughput Chromosome Conformation Capture (3C) Ddata. Trends Genet 2015; 31:673–682 [View Article] [PubMed]
    [Google Scholar]
  14. Marbouty M, Cournac A, Flot J-F, Marie-Nelly H, Mozziconacci J et al. Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms. Elife 2014; 3:e03318 [View Article] [PubMed]
    [Google Scholar]
  15. Burton JN, Liachko I, Dunham MJ, Shendure J. Species-level deconvolution of metagenome assemblies with Hi-C-based contact probability maps. G3 2014; 4:1339–1346 [View Article] [PubMed]
    [Google Scholar]
  16. Beitel CW, Froenicke L, Lang JM, Korf IF, Michelmore RW et al. Strain- and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products. PeerJ 2014; 2:e415 [View Article] [PubMed]
    [Google Scholar]
  17. Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO et al. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat Commun 2018; 9:870 [View Article] [PubMed]
    [Google Scholar]
  18. Cuscó A, Pérez D, Viñes J, Fàbregas N, Francino O. Novel canine high-quality metagenome-assembled genomes, prophages and host-associated plasmids provided by long-read metagenomics together with Hi-C proximity ligation. Microb Genom 2022; 8:000802 [View Article] [PubMed]
    [Google Scholar]
  19. Bickhart DM, Kolmogorov M, Tseng E, Portik DM, Korobeynikov A et al. Generating lineage-resolved, complete metagenome-assembled genomes from complex microbial communities. Nat Biotechnol 2022; 40:711–719 [View Article] [PubMed]
    [Google Scholar]
  20. Kalmar L, Gupta S, Kean IRL, Ba X, Hadjirin N et al. HAM-ART: an optimised culture-free Hi-C metagenomics pipeline for tracking antimicrobial resistance genes in complex microbial communities. PLOS Genet 2022; 18:e1009776 [View Article] [PubMed]
    [Google Scholar]
  21. Yaffe E, Relman DA. Tracking microbial evolution in the human gut using Hi-C reveals extensive horizontal gene transfer, persistence and adaptation. Nat Microbiol 2020; 5:343–353 [View Article] [PubMed]
    [Google Scholar]
  22. Kent AG, Vill AC, Shi Q, Satlin MJ, Brito IL. Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C. Nat Commun 2020; 11:4379 [View Article] [PubMed]
    [Google Scholar]
  23. DeMaere MZ, Liu MYZ, Lin E, Djordjevic SP, Charles IG et al. Metagenomic Hi-C of a healthy human fecal microbiome transplant donor. Microbiol Resour Announc 2020; 9:e01523-19 [View Article] [PubMed]
    [Google Scholar]
  24. Press MO, Wiser AH, Kronenberg ZN, Langford KW, Shakya M et al. Hi-C deconvolution of a human gut microbiome yields high-quality draft genomes and reveals plasmid-genome interactions. bioRxiv 2017 [View Article]
    [Google Scholar]
  25. Ivanova V, Chernevskaya E, Vasiluev P, Ivanov A, Tolstoganov I et al. Hi-C metagenomics in the ICU: exploring clinically relevant features of gut microbiome in chronically critically Ill patients. Front Microbiol 2021; 12:770323 [View Article] [PubMed]
    [Google Scholar]
  26. DeMaere MZ, Darling AE. qc3C: Reference-free quality control for Hi-C sequencing data. PLOS Comput Biol 2021; 17:e1008839 [View Article] [PubMed]
    [Google Scholar]
  27. Du Y, Laperriere SM, Fuhrman J, Sun F. Normalizing metagenomic Hi-C data and detecting spurious contacts using zero-inflated negative binomial regression. J Comput Biol 2022; 29:106–120 [View Article] [PubMed]
    [Google Scholar]
  28. DeMaere MZ, Darling AE. bin3C: exploiting Hi-C sequencing data to accurately resolve metagenome-assembled genomes. Genome Biol 2019; 20:46 [View Article] [PubMed]
    [Google Scholar]
  29. Vich Vila A, Imhann F, Collij V, Jankipersadsing SA, Gurry T et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci Transl Med 2018; 10:eaap8914 [View Article] [PubMed]
    [Google Scholar]
  30. Janssen AB, Bartholomew TL, Marciszewska NP, Bonten MJM, Willems RJL et al. Nonclonal emergence of colistin resistance associated with mutations in the BasRS two-component system in Escherichia coli bloodstream isolates. mSphere 2020; 5:00143–20 [View Article] [PubMed]
    [Google Scholar]
  31. Zhang X, de Maat V, Guzmán Prieto AM, Prajsnar TK, Bayjanov JR et al. RNA-seq and Tn-seq reveal fitness determinants of vancomycin-resistant Enterococcus faecium during growth in human serum. BMC Genomics 2017; 18:893 [View Article]
    [Google Scholar]
  32. Alexander J, Bollmann A, Seitz W, Schwartz T. Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria. Sci Total Environ 2015; 512–513:316–325 [View Article] [PubMed]
    [Google Scholar]
  33. Gloor GB, Hummelen R, Macklaim JM, Dickson RJ, Fernandes AD et al. Microbiome profiling by illumina sequencing of combinatorial sequence-tagged PCR products. PLOS One 2010; 5:e15406 [View Article] [PubMed]
    [Google Scholar]
  34. Sun DL, Jiang X, Wu QL, Zhou NY. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl Environ Microbiol 2013; 79:5962–5969 [View Article] [PubMed]
    [Google Scholar]
  35. Foutel-Rodier T, Thierry A, Koszul R, Marbouty M. Generation of a metagenomics proximity ligation 3C library of a mammalian gut microbiota. Methods Enzymol 2018; 612:183–195 [View Article] [PubMed]
    [Google Scholar]
  36. SRA-Tools - NCBI. n.d http://ncbi.github.io/sra-tools/
  37. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011; 27:863–864 [View Article]
    [Google Scholar]
  38. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j 2011; 17:10 [View Article]
    [Google Scholar]
  39. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article] [PubMed]
    [Google Scholar]
  40. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26:841–842 [View Article] [PubMed]
    [Google Scholar]
  41. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article] [PubMed]
    [Google Scholar]
  42. Sayers EW, Agarwala R, Bolton EE, Brister JR, Canese K et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2019; 47:D23–D28 [View Article]
    [Google Scholar]
  43. Li D, Luo R, Liu C-M, Leung C-M, Ting H-F et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 2016; 102:3–11 [View Article] [PubMed]
    [Google Scholar]
  44. Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. elife 2021; 10:e65088 [View Article] [PubMed]
    [Google Scholar]
  45. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article] [PubMed]
    [Google Scholar]
  46. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009; 25:1754–1760 [View Article]
    [Google Scholar]
  47. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  48. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–6 [View Article] [PubMed]
    [Google Scholar]
  49. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol 2019; 20:257 [View Article] [PubMed]
    [Google Scholar]
  50. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  51. Marbouty M, Baudry L, Cournac A, Koszul R. Scaffolding bacterial genomes and probing host-virus interactions in gut microbiome by proximity ligation (chromosome capture) assay. Sci Adv 2017; 3:e1602105 [View Article] [PubMed]
    [Google Scholar]
  52. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–6 [View Article] [PubMed]
    [Google Scholar]
  53. Marbouty M, Thierry A, Millot GA, Koszul R. MetaHiC phage-bacteria infection network reveals active cycling phages of the healthy human gut. elife 2021; 10:e60608 [View Article] [PubMed]
    [Google Scholar]
  54. Liu M, Darling A. Metagenomic Chromosome Conformation Capture (3C): techniques, applications, and challenges. F1000Res 2015; 4:1377 [View Article] [PubMed]
    [Google Scholar]
  55. Porse A, Schou TS, Munck C, Ellabaan MMH, Sommer MOA. Biochemical mechanisms determine the functional compatibility of heterologous genes. Nat Commun 2018; 9:1–11 [View Article] [PubMed]
    [Google Scholar]
  56. Nagano T, Várnai C, Schoenfelder S, Javierre B-M, Wingett SW et al. Comparison of Hi-C results using in-solution versus in-nucleus ligation. Genome Biol 2015; 16:175 [View Article] [PubMed]
    [Google Scholar]
  57. DeMaere MZ, Darling AE. Sim3C: Simulation of Hi-C and Meta3C proximity ligation sequencing technologies. Gigascience 2018; 7:1–12 [View Article] [PubMed]
    [Google Scholar]
  58. Stalder T, Press MO, Sullivan S, Liachko I, Top EM. Linking the resistome and plasmidome to the microbiome. ISME J 2019; 13:2437–2446 [View Article] [PubMed]
    [Google Scholar]
  59. Adams MD, Bishop B, Wright MS. Quantitative assessment of insertion sequence impact on bacterial genome architecture. Microbial Genomics 2016; 2:e000062 [View Article]
    [Google Scholar]
  60. Shapiro JA, von Sternberg R. Why repetitive DNA is essential to genome function. Biol Rev Camb Philos Soc 2005; 80:227–250 [View Article] [PubMed]
    [Google Scholar]
  61. Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev 2014; 38:865–891 [View Article] [PubMed]
    [Google Scholar]
  62. Razavi M, Kristiansson E, Flach C-F, Larsson DGJ, LaPara TM. The association between insertion sequences and antibiotic resistance genes. mSphere 2020; 5:e00418-20 [View Article]
    [Google Scholar]
  63. Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 2012; 13:36–46 [View Article]
    [Google Scholar]
  64. Baptista RP, Kissinger JC. Is reliance on an inaccurate genome sequence sabotaging your experiments?. PLoS Pathog 2019; 15:e1007901 [View Article] [PubMed]
    [Google Scholar]
  65. Tenaillon O, Skurnik D, Picard B, Denamur E. The population genetics of commensal Escherichia coli. Nat Rev Microbiol 2010; 8:207–217 [View Article] [PubMed]
    [Google Scholar]
  66. Layton BA, Walters SP, Lam LH, Boehm AB. Enterococcus species distribution among human and animal hosts using multiplex PCR. J Appl Microbiol 2010; 109:539–547
    [Google Scholar]
  67. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol 2019; 20:257
    [Google Scholar]
  68. von Meijenfeldt FAB, Arkhipova K, Cambuy DD, Coutinho FH, Dutilh BE. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol 2019; 20:217 [View Article]
    [Google Scholar]
  69. Dipippo JL, Nesbø CL, Dahle H, Doolittle WF, Birkland NK et al. Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from an oil production fluid. Int J Syst Evol Microbiol 2009; 59:2991–3000
    [Google Scholar]
  70. Bartha NA, Sóki J, Urbán E, Nagy E. Investigation of the prevalence of tetQ, tetX and tetX1 genes in Bacteroides strains with elevated tigecycline minimum inhibitory concentrations. Int J Antimicrob Agents 2011; 38:522–525 [View Article] [PubMed]
    [Google Scholar]
  71. Duggett N. High-throughput sequencing of the chicken gut microbiome. PhD thesis. University of Birmingham; 2016 https://etheses.bham.ac.uk/id/eprint/6678/
  72. Binta B, Patel M. Detection of cfxA2, cfxA3, and cfxA6 genes in beta-lactamase producing oral anaerobes. J Appl Oral Sci 2016; 24:142–147 [View Article] [PubMed]
    [Google Scholar]
  73. Forslund K, Sunagawa S, Kultima JR, Mende DR, Arumugam M et al. Country-specific antibiotic use practices impact the human gut resistome. Genome Res 2013; 23:1163–1169 [View Article] [PubMed]
    [Google Scholar]
  74. Feng J, Li B, Jiang X, Yang Y, Wells GF et al. Antibiotic resistome in a large‐scale healthy human gut microbiota deciphered by metagenomic and network analyses. Environ Microbiol 2018; 20:355–368 [View Article]
    [Google Scholar]
  75. Domingo M-C, Huletsky A, Boissinot M, Bernard KA, Picard FJ et al. Ruminococcus gauvreauii sp. nov., a glycopeptide-resistant species isolated from a human faecal specimen. Int J Syst Evol Microbiol 2008; 58:1393–1397 [View Article] [PubMed]
    [Google Scholar]
  76. Hashimoto Y, Hisatsune J, Suzuki M, Kurushima J, Nomura T et al. Elucidation of host diversity of the VanD-carrying genomic islands in enterococci and anaerobes. JAC Antimicrob Resist 2022; 4:dlab189 [View Article] [PubMed]
    [Google Scholar]
  77. Top J, Sinnige JC, Brouwer EC, Werner G, Corander J et al. Identification of a novel genomic island associated with vanD-type vancomycin resistance in six dutch vancomycin-resistant Enterococcus faecium isolates. Antimicrob Agents Chemother 2018; 62:e01793-17 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001030
Loading
/content/journal/mgen/10.1099/mgen.0.001030
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error