Skip to content
1887

Abstract

Enteritidis is the second most common serovar associated with invasive non-typhoidal (iNTS) disease in sub-Saharan Africa. Previously, genomic and phylogenetic characterization of . Enteritidis isolates from the human bloodstream led to the discovery of the Central/Eastern African clade (CEAC) and West African clade, which were distinct from the gastroenteritis-associated global epidemic clade (GEC). The African . Enteritidis clades have unique genetic signatures that include genomic degradation, novel prophage repertoires and multi-drug resistance, but the molecular basis for the enhanced propensity of African . Enteritidis to cause bloodstream infection is poorly understood. We used transposon insertion sequencing (TIS) to identify the genetic determinants of the GEC representative strain P125109 and the CEAC representative strain D7795 for growth in three conditions (LB or minimal NonSPI2 and InSPI2 growth media), and for survival and replication in RAW 264.7 murine macrophages. We identified 207 -required genes that were common to both . Enteritidis strains and also required by . Typhimurium, . Typhi and , and 63 genes that were only required by individual . Enteritidis strains. Similar types of genes were required by both P125109 and D7795 for optimal growth in particular media. Screening the transposon libraries during macrophage infection identified 177 P125109 and 201 D7795 genes that contribute to bacterial survival and replication in mammalian cells. The majority of these genes have proven roles in virulence. Our analysis uncovered candidate strain-specific macrophage fitness genes that could encode novel virulence factors.

Funding
This study was supported by the:
  • Wellcome Trust (Award 106914/Z/15/Z)
    • Principle Award Recipient: JayC. D. Hinton
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001017
2023-05-23
2025-01-18
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/5/mgen001017.html?itemId=/content/journal/mgen/10.1099/mgen.0.001017&mimeType=html&fmt=ahah

References

  1. Fong WY, Canals R, Predeus AV, Perez-Sepulveda B, Wenner N et al. Genome-wide fitness analysis identifies genes required for in vitro growth and macrophage infection by African and global epidemic pathovariants of Salmonella enterica Enteritidis. Microbiology Society. Figure 2023 [View Article]
    [Google Scholar]
  2. Reddy EA, Shaw AV, Crump JA. Community-acquired bloodstream infections in Africa: a systematic review and meta-analysis. Lancet Infect Dis 2010; 10:417–432 [View Article] [PubMed]
    [Google Scholar]
  3. Marchello CS, Dale AP, Pisharody S, Rubach MP, Crump JA. A systematic review and meta-analysis of the prevalence of community-onset bloodstream infections among hospitalized patients in Africa and Asia. Antimicrob Agents Chemother 2019; 64:e01974-19 [View Article] [PubMed]
    [Google Scholar]
  4. Uche IV, MacLennan CA, Saul A. A systematic review of the incidence, risk factors and case fatality rates of Invasive Nontyphoidal Salmonella (iNTS) disease in Africa (1966 to 2014). PLoS Negl Trop Dis 2017; 11:e0005118 [View Article] [PubMed]
    [Google Scholar]
  5. Ao TT, Feasey NA, Gordon MA, Keddy KH, Angulo FJ et al. Global burden of invasive nontyphoidal Salmonella disease, 2010. Emerg Infect Dis 2015; 21:941–949 [View Article] [PubMed]
    [Google Scholar]
  6. Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA. Invasive non-typhoidal salmonella disease: an emerging and neglected tropical disease in Africa. Lancet 2012; 379:2489–2499 [View Article] [PubMed]
    [Google Scholar]
  7. Stanaway JD, Parisi A, Sarkar K, Blacker BF, Reiner RC. The global burden of non-typhoidal salmonella invasive disease: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis 2019; 19:1312–1324 [View Article] [PubMed]
    [Google Scholar]
  8. Marchello CS, Birkhold M, Crump JA, Martin LB, Ansah MO. Complications and mortality of non-typhoidal salmonella invasive disease: a global systematic review and meta-analysis. Lancet Infect Dis 2022; 22:692–705 [View Article] [PubMed]
    [Google Scholar]
  9. Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE et al. Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res 2009; 19:2279–2287 [View Article] [PubMed]
    [Google Scholar]
  10. Feasey NA, Hadfield J, Keddy KH, Dallman TJ, Jacobs J et al. Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings. Nat Genet 2016; 48:1211–1217 [View Article] [PubMed]
    [Google Scholar]
  11. Okoro CK, Kingsley RA, Connor TR, Harris SR, Parry CM et al. Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa. Nat Genet 2012; 44:1215–1221 [View Article] [PubMed]
    [Google Scholar]
  12. Pulford CV, Perez-Sepulveda BM, Canals R, Bevington JA, Bengtsson RJ et al. Stepwise evolution of Salmonella Typhimurium ST313 causing bloodstream infection in Africa. Nat Microbiol 2021; 6:327–338 [View Article] [PubMed]
    [Google Scholar]
  13. Thomson NR, Clayton DJ, Windhorst D, Vernikos G, Davidson S et al. Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res 2008; 18:1624–1637 [View Article] [PubMed]
    [Google Scholar]
  14. Barrow PA. Experimental infection of chickens with Salmonella enteritidis. Avian Pathol 1991; 20:145–153 [View Article] [PubMed]
    [Google Scholar]
  15. Barrow PA, Lovell MA. Experimental infection of egg-laying hens with Salmonella enteritidis phage type 4. Avian Pathol 1991; 20:335–348 [View Article] [PubMed]
    [Google Scholar]
  16. Perez-Sepulveda BM, Predeus AV, Fong WY, Parry CM, Cheesbrough J et al. Complete genome sequences of African Salmonella enterica serovar enteritidis clinical isolates associated with bloodstream infection. Microbiol Resour Announc 2021; 10:e01452-20 [View Article] [PubMed]
    [Google Scholar]
  17. Silva CA, Blondel CJ, Quezada CP, Porwollik S, Andrews-Polymenis HL et al. Infection of mice by Salmonella enterica serovar Enteritidis involves additional genes that are absent in the genome of serovar Typhimurium. Infect Immun 2012; 80:839–849 [View Article] [PubMed]
    [Google Scholar]
  18. Shah DH, Zhou X, Kim H-Y, Call DR, Guard J. Transposon mutagenesis of Salmonella enterica serovar Enteritidis identifies genes that contribute to invasiveness in human and chicken cells and survival in egg albumen. Infect Immun 2012; 80:4203–4215 [View Article] [PubMed]
    [Google Scholar]
  19. Jayeola V, McClelland M, Porwollik S, Chu W, Farber J et al. Identification of novel genes mediating survival of Salmonella on low-moisture foods via transposon sequencing analysis. Front Microbiol 2020; 11:726 [View Article] [PubMed]
    [Google Scholar]
  20. Raspoet R, Shearer N, Appia-Ayme C, Haesebrouck F, Ducatelle R et al. A genome-wide screen identifies Salmonella Enteritidis lipopolysaccharide biosynthesis and the HtrA heat shock protein as crucial factors involved in egg white persistence at chicken body temperature. Poult Sci 2014; 93:1263–1269 [View Article] [PubMed]
    [Google Scholar]
  21. Das S, Ray S, Arunima A, Sahu B, Suar M. A ROD9 island encoded gene in Salmonella Enteritidis plays an important role in acid tolerance response and helps in systemic infection in mice. Virulence 2020; 11:247–259 [View Article] [PubMed]
    [Google Scholar]
  22. Arunima A, Swain SK, Ray S, Prusty BK, Suar M. RpoS-regulated SEN1538 gene promotes resistance to stress and influences Salmonella enterica serovar enteritidis virulence. Virulence 2020; 11:295–314 [View Article] [PubMed]
    [Google Scholar]
  23. Ray S, Das S, Panda PK, Suar M. Identification of a new alanine racemase in Salmonella Enteritidis and its contribution to pathogenesis. Gut Pathog 2018; 10:30 [View Article] [PubMed]
    [Google Scholar]
  24. Espinoza RA, Silva-Valenzuela CA, Amaya FA, Urrutia ÍM, Contreras I et al. Differential roles for pathogenicity islands SPI-13 and SPI-8 in the interaction of Salmonella Enteritidis and Salmonella Typhi with murine and human macrophages. Biol Res 2017; 50:5 [View Article] [PubMed]
    [Google Scholar]
  25. Parsons BN, Humphrey S, Salisbury AM, Mikoleit J, Hinton JCD et al. Invasive non-typhoidal Salmonella Typhimurium ST313 are not host-restricted and have an invasive phenotype in experimentally infected chickens. PLoS Negl Trop Dis 2013; 7:e2487 [View Article] [PubMed]
    [Google Scholar]
  26. Goh YS, MacLennan CA. Invasive African nontyphoidal Salmonella requires high levels of complement for cell-free antibody-dependent killing. J Immunol Methods 2013; 387:121–129 [View Article] [PubMed]
    [Google Scholar]
  27. Preciado-Llanes L, Aulicino A, Canals R, Moynihan PJ, Zhu X et al. Evasion of MAIT cell recognition by the African Salmonella Typhimurium ST313 pathovar that causes invasive disease. Proc Natl Acad Sci U S A 2020; 117:20717–20728 [View Article] [PubMed]
    [Google Scholar]
  28. Lê-Bury G, Deschamps C, Kizilyaprak C, Blanchard W, Daraspe J et al. Increased intracellular survival of Salmonella Typhimurium ST313 in HIV-1-infected primary human macrophages is not associated with Salmonella hijacking the HIV compartment. Biol Cell 2020; 112:92–101 [View Article] [PubMed]
    [Google Scholar]
  29. Sokaribo AS, Balezantis LR, MacKenzie KD, Wang Y, Palmer MB et al. A SNP in the cache 1 signaling domain of diguanylate cyclase STM1987 leads to increased in vivo fitness of invasive Salmonella strains. Infect Immun 2021; 89:e00810-20 [View Article] [PubMed]
    [Google Scholar]
  30. Canals R, Chaudhuri RR, Steiner RE, Owen SV, Quinones-Olvera N et al. The fitness landscape of the African Salmonella Typhimurium ST313 strain D23580 reveals unique properties of the pBT1 plasmid. PLoS Pathog 2019; 15:e1007948 [View Article] [PubMed]
    [Google Scholar]
  31. Canals R, Hammarlöf DL, Kröger C, Owen SV, Fong WY et al. Adding function to the genome of African Salmonella Typhimurium ST313 strain D23580. PLoS Biol 2019; 17:e3000059 [View Article] [PubMed]
    [Google Scholar]
  32. Owen SV, Wenner N, Canals R, Makumi A, Hammarlöf DL et al. Characterization of the prophage repertoire of African Salmonella Typhimurium ST313 reveals high levels of spontaneous induction of novel phage BTP1. Front Microbiol 2017; 8:235 [View Article] [PubMed]
    [Google Scholar]
  33. Herrero-Fresno A, Espinel IC, Spiegelhauer MR, Guerra PR, Andersen KW et al. The homolog of the gene bstA of the BTP1 phage from Salmonella enterica serovar Typhimurium ST313 is an antivirulence gene in Salmonella enterica serovar Dublin. Infect Immun 2018; 86:e00784-17 [View Article] [PubMed]
    [Google Scholar]
  34. Kintz E, Davies MR, Hammarlöf DL, Canals R, Hinton JCD et al. A BTP1 prophage gene present in invasive non-typhoidal Salmonella determines composition and length of the O-antigen of the lipopolysaccharide. Mol Microbiol 2015; 96:263–275 [View Article] [PubMed]
    [Google Scholar]
  35. Herrero-Fresno A, Wallrodt I, Leekitcharoenphon P, Olsen JE, Aarestrup FM et al. The role of the ST313-td gene in virulence of Salmonella Typhimurium ST313. PLoS One 2014; 9:e84566 [View Article] [PubMed]
    [Google Scholar]
  36. Yang J, Barrila J, Roland KL, Kilbourne J, Ott CM et al. Characterization of the invasive, multidrug resistant non-typhoidal Salmonella strain D23580 in a murine model of infection. PLoS Negl Trop Dis 2015; 9:e0003839 [View Article] [PubMed]
    [Google Scholar]
  37. Carden S, Okoro C, Dougan G, Monack D. Non-typhoidal Salmonella Typhimurium ST313 isolates that cause bacteremia in humans stimulate less inflammasome activation than ST19 isolates associated with gastroenteritis. Pathog Dis 2015; 73:ftu023 [View Article] [PubMed]
    [Google Scholar]
  38. Ramachandran G, Perkins DJ, Schmidlein PJ, Tulapurkar ME, Tennant SM. Invasive Salmonella Typhimurium ST313 with naturally attenuated flagellin elicits reduced inflammation and replicates within macrophages. PLoS Negl Trop Dis 2015; 9:e3394 [View Article] [PubMed]
    [Google Scholar]
  39. Singletary LA, Karlinsey JE, Libby SJ, Mooney JP, Lokken KL et al. Loss of multicellular behavior in epidemic African nontyphoidal Salmonella enterica serovar Typhimurium ST313 strain D23580. mBio 2016; 7:e02265 [View Article] [PubMed]
    [Google Scholar]
  40. Carden SE, Walker GT, Honeycutt J, Lugo K, Pham T et al. Pseudogenization of the secreted effector gene sseI confers rapid systemic dissemination of S. Typhimurium ST313 within migratory dendritic cells. Cell Host Microbe 2017; 21:182–194 [View Article] [PubMed]
    [Google Scholar]
  41. Hammarlöf DL, Kröger C, Owen SV, Canals R, Lacharme-Lora L et al. Role of a single noncoding nucleotide in the evolution of an epidemic African clade of Salmonella. Proc Natl Acad Sci U S A 2018; 115:E2614–E2623 [View Article] [PubMed]
    [Google Scholar]
  42. Honeycutt JD, Wenner N, Li Y, Brewer SM, Massis LM et al. Genetic variation in the MacAB-TolC efflux pump influences pathogenesis of invasive Salmonella isolates from Africa. PLoS Pathog 2020; 16:e1008763 [View Article] [PubMed]
    [Google Scholar]
  43. MacKenzie KD, Wang Y, Musicha P, Hansen EG, Palmer MB et al. Parallel evolution leading to impaired biofilm formation in invasive Salmonella strains. PLoS Genet 2019; 15:e1008233 [View Article] [PubMed]
    [Google Scholar]
  44. Cain AK, Barquist L, Goodman AL, Paulsen IT, Parkhill J et al. A decade of advances in transposon-insertion sequencing. Nat Rev Genet 2020; 21:526–540 [View Article] [PubMed]
    [Google Scholar]
  45. Barquist L, Langridge GC, Turner DJ, Phan M-D, Turner AK et al. A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium. Nucleic Acids Res 2013; 41:4549–4564 [View Article] [PubMed]
    [Google Scholar]
  46. Langridge GC, Phan M-D, Turner DJ, Perkins TT, Parts L et al. Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 2009; 19:2308–2316 [View Article] [PubMed]
    [Google Scholar]
  47. Rousset F, Cabezas-Caballero J, Piastra-Facon F, Fernández-Rodríguez J, Clermont O et al. The impact of genetic diversity on gene essentiality within the Escherichia coli species. Nat Microbiol 2021; 6:301–312 [View Article] [PubMed]
    [Google Scholar]
  48. Poulsen BE, Yang R, Clatworthy AE, White T, Osmulski SJ et al. Defining the core essential genome of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2019; 116:10072–10080 [View Article] [PubMed]
    [Google Scholar]
  49. Canals R, Xia X-Q, Fronick C, Clifton SW, Ahmer BMM et al. High-throughput comparison of gene fitness among related bacteria. BMC Genomics 2012; 13:212 [View Article] [PubMed]
    [Google Scholar]
  50. Khatiwara A, Jiang T, Sung S-S, Dawoud T, Kim JN et al. Genome scanning for conditionally essential genes in Salmonella enterica serotype Typhimurium. Appl Environ Microbiol 2012; 78:3098–3107 [View Article] [PubMed]
    [Google Scholar]
  51. Karash S, Kwon YM. Iron-dependent essential genes in Salmonella Typhimurium. BMC Genomics 2018; 19:610 [View Article] [PubMed]
    [Google Scholar]
  52. Kingsley RA, Langridge G, Smith SE, Makendi C, Fookes M et al. Functional analysis of Salmonella Typhi adaptation to survival in water. Environ Microbiol 2018; 20:4079–4090 [View Article] [PubMed]
    [Google Scholar]
  53. Gogoi M, Shreenivas MM, Chakravortty D. Hoodwinking the big-eater to prosper: the Salmonella-macrophage paradigm. J Innate Immun 2019; 11:289–299 [View Article] [PubMed]
    [Google Scholar]
  54. Kröger C, Colgan A, Srikumar S, Händler K, Sivasankaran SK et al. An infection-relevant transcriptomic compendium for Salmonella enterica serovar Typhimurium. Cell Host Microbe 2013; 14:683–695 [View Article] [PubMed]
    [Google Scholar]
  55. Löber S, Jäckel D, Kaiser N, Hensel M. Regulation of Salmonella pathogenicity island 2 genes by independent environmental signals. Int J Med Microbiol 2006; 296:435–447 [View Article] [PubMed]
    [Google Scholar]
  56. Tartoff KD, Hobbs CA. Improved media for growing plasmid and cosmid clones. Bethesda Res Lab Focus 1987; 9:12
    [Google Scholar]
  57. Cold Spring Harbor SOC medium. Cold Spring Harb Protoc 2018; 2018:pdb.rec098863 [View Article]
    [Google Scholar]
  58. Fong WY. Exploring the fitness landscape of gastroenteritis-associated and bloodstream infection-associated Salmonella Enteritidis. PhD Thesis University of Liverpool; UK: 2021 https://livrepository.liverpool.ac.uk/id/eprint/3129829
    [Google Scholar]
  59. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000; 97:6640–6645 [View Article] [PubMed]
    [Google Scholar]
  60. Koskiniemi S, Pränting M, Gullberg E, Näsvall J, Andersson DI. Activation of cryptic aminoglycoside resistance in Salmonella enterica. Mol Microbiol 2011; 80:1464–1478 [View Article] [PubMed]
    [Google Scholar]
  61. Doublet B, Douard G, Targant H, Meunier D, Madec J-Y et al. Antibiotic marker modifications of lambda Red and FLP helper plasmids, pKD46 and pCP20, for inactivation of chromosomal genes using PCR products in multidrug-resistant strains. J Microbiol Methods 2008; 75:359–361 [View Article] [PubMed]
    [Google Scholar]
  62. Barquist L, Mayho M, Cummins C, Cain AK, Boinett CJ et al. The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries. Bioinformatics 2016; 32:1109–1111 [View Article] [PubMed]
    [Google Scholar]
  63. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  64. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 2017; 34:2115–2122 [View Article] [PubMed]
    [Google Scholar]
  65. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article] [PubMed]
    [Google Scholar]
  66. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011; 17:10 [View Article]
    [Google Scholar]
  67. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article] [PubMed]
    [Google Scholar]
  68. Goodall ECA, Robinson A, Johnston IG, Jabbari S, Turner KA et al. The essential genome of Escherichia coli K-12. mBio 2018; 9:e02096-17
    [Google Scholar]
  69. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014; 30:923–930 [View Article] [PubMed]
    [Google Scholar]
  70. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15:550 [View Article] [PubMed]
    [Google Scholar]
  71. Kröger C, Dillon SC, Cameron ADS, Papenfort K, Sivasankaran SK et al. The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium. Proc Natl Acad Sci U S A 2012; 109:E1277–86 [View Article] [PubMed]
    [Google Scholar]
  72. Rancati G, Moffat J, Typas A, Pavelka N. Emerging and evolving concepts in gene essentiality. Nat Rev Genet 2018; 19:34–49 [View Article] [PubMed]
    [Google Scholar]
  73. Hutchison CA 3rd, Merryman C, Sun L, Assad-Garcia N, Richter RA et al. Polar effects of transposon insertion into a minimal bacterial genome. J Bacteriol 2019; 201:e00185-19 [View Article] [PubMed]
    [Google Scholar]
  74. Elsheimer-Matulova M, Varmuzova K, Kyrova K, Havlickova H, Sisak F et al. phoP, SPI1, SPI2 and aroA mutants of Salmonella Enteritidis induce a different immune response in chickens. Vet Res 2015; 46:96 [View Article] [PubMed]
    [Google Scholar]
  75. Hensel M, Shea JE, Waterman SR, Mundy R, Nikolaus T et al. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol 1998; 30:163–174 [View Article] [PubMed]
    [Google Scholar]
  76. Porwollik S, Santiviago CA, Cheng P, Long F, Desai P et al. Defined single-gene and multi-gene deletion mutant collections in Salmonella enterica sv Typhimurium. PLoS One 2014; 9:e99820 [View Article] [PubMed]
    [Google Scholar]
  77. Rychlik I, Karasova D, Sebkova A, Volf J, Sisak F et al. Virulence potential of five major pathogenicity islands (SPI-1 to SPI-5) of Salmonella enterica serovar Enteritidis for chickens. BMC Microbiol 2009; 9:268 [View Article] [PubMed]
    [Google Scholar]
  78. Santiviago CA, Reynolds MM, Porwollik S, Choi S-H, Long F et al. Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice. PLoS Pathog 2009; 5:e1000477 [View Article] [PubMed]
    [Google Scholar]
  79. Kimura S, Hubbard TP, Davis BM, Waldor MK. The nucleoid binding protein H-NS biases genome-wide transposon insertion landscapes. mBio 2016; 7:e01351-16 [View Article] [PubMed]
    [Google Scholar]
  80. Lucchini S, Rowley G, Goldberg MD, Hurd D, Harrison M et al. H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog 2006; 2:e81 [View Article] [PubMed]
    [Google Scholar]
  81. Navarre WW, Porwollik S, Wang Y, McClelland M, Rosen H et al. Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 2006; 313:236–238 [View Article] [PubMed]
    [Google Scholar]
  82. Will WR, Navarre WW, Fang FC. Integrated circuits: how transcriptional silencing and counter-silencing facilitate bacterial evolution. Curr Opin Microbiol 2015; 23:8–13 [View Article] [PubMed]
    [Google Scholar]
  83. Ghomi FA, Langridge GC, Cain AK, Boinett C, Abd El Ghany M et al. High-throughput transposon mutagenesis in the family Enterobacteriaceae reveals core essential genes and rapid turnover of essentiality. bioRxiv512852 [View Article]
    [Google Scholar]
  84. Potts AH, Guo Y, Ahmer BMM, Romeo T. Role of CsrA in stress responses and metabolism important for Salmonella virulence revealed by integrated transcriptomics. PLoS One 2019; 14:e0211430 [View Article] [PubMed]
    [Google Scholar]
  85. Grazziotin AL, Vidal NM, Venancio TM. Uncovering major genomic features of essential genes in Bacteria and a methanogenic Archaea. FEBS J 2015; 282:3395–3411 [View Article] [PubMed]
    [Google Scholar]
  86. Holt KE, Thomson NR, Wain J, Langridge GC, Hasan R et al. Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi. BMC Genomics 2009; 10:36 [View Article] [PubMed]
    [Google Scholar]
  87. Okoro CK, Barquist L, Connor TR, Harris SR, Clare S et al. Signatures of adaptation in human invasive Salmonella Typhimurium ST313 populations from sub-Saharan Africa. PLoS Negl Trop Dis 2015; 9:e0003611 [View Article]
    [Google Scholar]
  88. Sezonov G, Joseleau-Petit D, D’Ari R. Escherichia coli physiology in Luria-Bertani broth. J Bacteriol 2007; 189:8746–8749 [View Article] [PubMed]
    [Google Scholar]
  89. Wang Z, Zhu S, Li C, Lyu L, Yu J et al. Gene essentiality profiling reveals a novel determinant of stresses preventing protein aggregation in Salmonella. Emerg Microbes Infect 2022; 11:1554–1571 [View Article] [PubMed]
    [Google Scholar]
  90. Azriel S, Goren A, Rahav G, Gal-Mor O. The stringent response regulator DksA is required for Salmonella enterica serovar Typhimurium growth in minimal medium, motility, biofilm formation, and intestinal colonization. Infect Immun 2016; 84:375–384 [View Article] [PubMed]
    [Google Scholar]
  91. Cohen H, Adani B, Cohen E, Piscon B, Azriel S et al. The ancestral stringent response potentiator, DksA has been adapted throughout Salmonella evolution to orchestrate the expression of metabolic, motility, and virulence pathways. Gut Microbes 2022; 14:1997294 [View Article] [PubMed]
    [Google Scholar]
  92. Barquist L, Boinett CJ, Cain AK. Approaches to querying bacterial genomes with transposon-insertion sequencing. RNA Biol 2013; 10:1161–1169 [View Article] [PubMed]
    [Google Scholar]
  93. Mandal RK, Jiang T, Kwon YM. Genetic determinants in Salmonella enterica serotype Typhimurium required for overcoming in vitro stressors in the mimicking host environment. Microbiol Spectr 2021; 9:e0015521 [View Article] [PubMed]
    [Google Scholar]
  94. Petersen E, Miller SI. The cellular microbiology of Salmonellae interactions with macrophages. Cell Microbiol 2019; 21:e13116 [View Article] [PubMed]
    [Google Scholar]
  95. Thompson JA, Liu M, Helaine S, Holden DW. Contribution of the PhoP/Q regulon to survival and replication of Salmonella enterica serovar Typhimurium in macrophages. Microbiology 2011; 157:2084–2093 [View Article] [PubMed]
    [Google Scholar]
  96. Rankin JD, Taylor RJ. The estimation of doses of Salmonella Typhimurium suitable for the experimental production of disease in calves. Vet Rec 1966; 78:706–707 [View Article] [PubMed]
    [Google Scholar]
  97. Colgan AM, Kröger C, Diard M, Hardt W-D, Puente JL et al. The impact of 18 ancestral and horizontally-acquired regulatory proteins upon the transcriptome and sRNA landscape of Salmonella enterica serovar Typhimurium. PLoS Genet 2016; 12:e1006258 [View Article] [PubMed]
    [Google Scholar]
  98. Das S, Ray S, Ryan D, Sahu B, Suar M. Identification of a novel gene in ROD9 island of Salmonella Enteritidis involved in the alteration of virulence-associated genes expression. Virulence 2018; 9:348–362 [View Article] [PubMed]
    [Google Scholar]
  99. Venturini E, Svensson SL, Maaß S, Gelhausen R, Eggenhofer F et al. A global data-driven census of Salmonella small proteins and their potential functions in bacterial virulence. microLife 2020; 1:uqaa002 [View Article]
    [Google Scholar]
  100. Schnaitman CA, Klena JD. Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev 1993; 57:655–682 [View Article] [PubMed]
    [Google Scholar]
  101. Hölzer SU, Schlumberger MC, Jäckel D, Hensel M. Effect of the O-antigen length of lipopolysaccharide on the functions of type III secretion systems in Salmonella enterica. Infect Immun 2009; 77:5458–5470
    [Google Scholar]
  102. Silva-Valenzuela CA, Molina-Quiroz RC, Desai P, Valenzuela C, Porwollik S et al. Analysis of two complementary single-gene deletion mutant libraries of Salmonella Typhimurium in intraperitoneal infection of BALB/c mice. Front Microbiol 2015; 6:1455 [View Article] [PubMed]
    [Google Scholar]
  103. Chaudhuri RR, Morgan E, Peters SE, Pleasance SJ, Hudson DL et al. Comprehensive assignment of roles for Salmonella Typhimurium genes in intestinal colonization of food-producing animals. PLoS Genet 2013; 9:e1003456 [View Article] [PubMed]
    [Google Scholar]
  104. Piccini G, Montomoli E. Pathogenic signature of invasive non-typhoidal Salmonella in Africa: implications for vaccine development. Hum Vaccine Immunother 2020; 16:2056–2071 [View Article]
    [Google Scholar]
  105. Khan A, Mathelier A. Intervene: a tool for intersection and visualization of multiple gene or genomic region sets. BMC Bioinformatics 2017; 18:287 [View Article] [PubMed]
    [Google Scholar]
  106. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 2001; 413:852–856 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001017
Loading
/content/journal/mgen/10.1099/mgen.0.001017
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error