1887

Abstract

Most biologically relevant and diagnostic mutations in the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genome have been identified in the S gene through global genomic surveillance efforts. However, large-scale whole-genome sequencing (WGS) is still challenging in developing countries due to higher costs, reagent delays and limited infrastructure. Consequently, only a small fraction of SARS-CoV-2 samples are characterized through WGS in these regions. Here, we present a complete workflow consisting of a fast library preparation protocol based on tiled amplification of the S gene, followed by a PCR barcoding step and sequencing using Nanopore platforms. This protocol facilitates fast and cost-effective identification of main variants of concern and mutational surveillance of the S gene. By applying this protocol, report time and overall costs for SARS-CoV-2 variant detection could be reduced, contributing to improved genomic surveillance programmes, particularly in low-income regions.

Funding
This study was supported by the:
  • FOCEM (MERCOSUR Structural Convergence Fund) (Award COF03/11)
    • Principle Award Recipient: NotApplicable
  • Fondo de Solidaridad para Proyectos Innovadores, Sociedad Civil, Francofonía y Desarrollo Humano (FSPI), Ambassade de France
    • Principle Award Recipient: NotApplicable
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001013
2023-05-18
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/5/mgen001013.html?itemId=/content/journal/mgen/10.1099/mgen.0.001013&mimeType=html&fmt=ahah

References

  1. Lu R, Zhao X, Li J, Niu P, Yang B et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395:565–574 [View Article] [PubMed]
    [Google Scholar]
  2. Wu F, Zhao S, Yu B, Chen Y-M, Wang W et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579:265–269 [View Article] [PubMed]
    [Google Scholar]
  3. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579:270–273 [View Article] [PubMed]
    [Google Scholar]
  4. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and Is blocked by a clinically proven protease inhibitor. Cell 2020; 181:271–280 [View Article] [PubMed]
    [Google Scholar]
  5. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro Surveill 2017; 22:30494 [View Article] [PubMed]
    [Google Scholar]
  6. Attwood SW, Hill SC, Aanensen DM, Connor TR, Pybus OG. Phylogenetic and phylodynamic approaches to understanding and combating the early SARS-CoV-2 pandemic. Nat Rev Genet 2022; 23:547–562 [View Article] [PubMed]
    [Google Scholar]
  7. Chiara M, D’Erchia AM, Gissi C, Manzari C, Parisi A et al. Next generation sequencing of SARS-CoV-2 genomes: challenges, applications and opportunities. Brief Bioinform 2021; 22:616–630 [View Article] [PubMed]
    [Google Scholar]
  8. Alm E, Broberg EK, Connor T, Hodcroft EB, Komissarov AB et al. Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020. Euro Surveill 2020; 25:2001410 [View Article] [PubMed]
    [Google Scholar]
  9. Konings F, Perkins MD, Kuhn JH, Pallen MJ, Alm EJ et al. SARS-CoV-2 variants of Interest and Concern naming scheme conducive for global discourse. Nat Microbiol 2021; 6:821–823 [View Article] [PubMed]
    [Google Scholar]
  10. Rambaut A, Holmes EC, O’Toole Á, Hill V, McCrone JT et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol 2020; 5:1403–1407 [View Article] [PubMed]
    [Google Scholar]
  11. O’Toole Á, Scher E, Underwood A, Jackson B, Hill V et al. Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evol 2021; 7:veab064 [View Article] [PubMed]
    [Google Scholar]
  12. Ou J, Lan W, Wu X, Zhao T, Duan B et al. Tracking SARS-CoV-2 Omicron diverse spike gene mutations identifies multiple inter-variant recombination events. Signal Transduct Target Ther 2022; 7:138 [View Article] [PubMed]
    [Google Scholar]
  13. O’Toole Á, Pybus OG, Abram ME, Kelly EJ, Rambaut A. Pango lineage designation and assignment using SARS-CoV-2 spike gene nucleotide sequences. BMC Genomics 2022; 23:121 [View Article] [PubMed]
    [Google Scholar]
  14. Rego N, Costábile A, Paz M, Salazar C, Perbolianachis P et al. Real-time genomic surveillance for SARS-CoV-2 variants of concern, Uruguay. Emerg Infect Dis 2021; 27:2957–2960 [View Article] [PubMed]
    [Google Scholar]
  15. Özkan E, Strobl MM, Novatchkova M, Yelagandula R, Albanese TG et al. High-throughput Mutational Surveillance of the SARS-CoV-2 Spike Gene. medRxiv 2021 http://medrxiv.org/lookup/doi/10.1101/2021.07.22.21259587 accessed 1 September 2022
    [Google Scholar]
  16. Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat Protoc 2017; 12:1261–1276 [View Article] [PubMed]
    [Google Scholar]
  17. Tyson JR, James P, Stoddart D, Sparks N, Wickenhagen A et al. Improvements to the ARTIC multiplex PCR method for SARS-CoV-2 genome sequencing using nanopore. bioRxiv 2020 [View Article]
    [Google Scholar]
  18. Freed NE, Vlková M, Faisal MB, Silander OK. Rapid and inexpensive whole-genome sequencing of SARS-CoV-2 using 1200 bp tiled amplicons and Oxford Nanopore Rapid Barcoding. Biol Methods Protoc 2020; 5:bpaa014 [View Article] [PubMed]
    [Google Scholar]
  19. Brandt C, Krautwurst S, Spott R, Lohde M, Jundzill M et al. poreCov-An easy to use, fast, and Robust workflow for SARS-CoV-2 genome reconstruction via nanopore sequencing. Front Genet 2021; 12:711437 [View Article] [PubMed]
    [Google Scholar]
  20. Aksamentov I, Roemer C, Hodcroft E, Neher R. Nextclade: clade assignment, mutation calling and quality control for viral genomes. JOSS 2021; 6:3773 [View Article]
    [Google Scholar]
  21. Abath FGC, Melo FL, Werkhauser RP, Montenegro L, Montenegro R et al. Single-tube nested PCR using immobilized internal primers. Biotechniques 2002; 33:1210–1212 [View Article] [PubMed]
    [Google Scholar]
  22. Oxford Nanopore Technologies ON Medaka. n.d https://github.com/nanoporetech/medaka
  23. Oxford Nanopore Technologies wf-artic. n.d https://github.com/epi2me-labs/wf-artic
  24. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V et al. Twelve years of SAMtools and BCFtools. Gigascience 2021; 10:giab008 [View Article] [PubMed]
    [Google Scholar]
  25. Ahlmann-Eltze C, Patil I. ggsignif: R Package for Displaying Significance Brackets for “ggplot2.”. PsyArXiv 2021 [View Article]
    [Google Scholar]
  26. Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 2014; 30:3276–3278 [View Article] [PubMed]
    [Google Scholar]
  27. Wickham H. ggplot2: Elegant Graphics for Data Analysis, 2nd. edn Cham: Springer International Publishing : Imprint: Springer (Use R!); 2016 p 1
    [Google Scholar]
  28. COVID-19 Genomics UK COG-UK; 2022 https://www.cogconsortium.uk/
  29. WHO Genomic sequencing of SARS-CoV-2: a guide to implementation for maximum impact on public health; 2021 https://www.who.int/publications/i/item/9789240018440
  30. Willett BJ, Grove J, MacLean OA, Wilkie C, De Lorenzo G et al. SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nat Microbiol 2022; 7:1161–1179 [View Article] [PubMed]
    [Google Scholar]
  31. Fass E, Zizelski Valenci G, Rubinstein M, Freidlin PJ, Rosencwaig S et al. HiSpike method for high-throughput cost effective sequencing of the SARS-CoV-2 spike gene. Front Med 2021; 8:798130 [View Article] [PubMed]
    [Google Scholar]
  32. Lim HJ, Park MY, Jung HS, Kwon Y, Kim I et al. Development of an efficient Sanger sequencing-based assay for detecting SARS-CoV-2 spike mutations. PLoS One 2021; 16:e0260850 [View Article] [PubMed]
    [Google Scholar]
  33. Salles TS, Cavalcanti AC, da Costa FB, Dias VZ, de Souza LM et al. Genomic surveillance of SARS-CoV-2 Spike gene by sanger sequencing. PLoS One 2022; 17:e0262170 [View Article] [PubMed]
    [Google Scholar]
  34. Bezerra MF, Machado LC, De Carvalho V do CV, Docena C, Brandão-Filho SP et al. A Sanger-based approach for scaling up screening of SARS-CoV-2 variants of interest and concern. Infect Genet Evol 2021; 92:104910 [View Article] [PubMed]
    [Google Scholar]
  35. Jørgensen TS, Blin K, Kuntke F, Salling HK, Michaelsen TY et al. A rapid, cost efficient and simple method to identify current SARS-CoV-2 variants of concern by Sanger sequencing part of the spike protein gene. medRxiv 2021 [View Article]
    [Google Scholar]
  36. Daniels RS, Harvey R, Ermetal B, Xiang Z, Galiano M et al. A Sanger sequencing protocol for SARS-CoV-2 S-gene. Influenza Other Respir Viruses 2021; 15:707–710 [View Article] [PubMed]
    [Google Scholar]
  37. Bloemen M, Rector A, Swinnen J, Ranst MV, Maes P et al. Fast detection of SARS-CoV-2 variants including Omicron using one-step RT-PCR and Sanger sequencing. J Virol Methods 2022; 304:114512 [View Article] [PubMed]
    [Google Scholar]
  38. Ko K, Takahashi K, Nagashima S, E B, Ouoba S et al. Mass screening of SARS-CoV-2 Variants using Sanger sequencing strategy in Hiroshima, Japan. Sci Rep 2022; 12:2419 [View Article] [PubMed]
    [Google Scholar]
  39. Stüder F, Petit JL, Engelen S, Mendoza-Parra MA. Real-time SARS-CoV-2 diagnostic and variants tracking over multiple candidates using nanopore DNA sequencing. Sci Rep 2021; 11:15869 [View Article] [PubMed]
    [Google Scholar]
  40. Liou CH, Wu HC, Liao YC, Yang Lauderdale TL, Huang IW et al. nanoMLST: accurate multilocus sequence typing using Oxford Nanopore Technologies MinION with a dual-barcode approach to multiplex large numbers of samples. Microb Genom 2020; 6:e000336 [View Article] [PubMed]
    [Google Scholar]
  41. Helmy M, Awad M, Mosa KA. Limited resources of genome sequencing in developing countries: challenges and solutions. Appl Transl Genom 2016; 9:15–19 [View Article] [PubMed]
    [Google Scholar]
  42. Brito AF, Semenova E, Dudas G, Hassler GW, Kalinich CC et al. Global disparities in SARS-CoV-2 genomic surveillance. medRxiv 20212021.08.21.21262393 [View Article] [PubMed]
    [Google Scholar]
  43. Maxmen A. Why some researchers oppose unrestricted sharing of coronavirus genome data. Nature 2021; 593:176–177 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001013
Loading
/content/journal/mgen/10.1099/mgen.0.001013
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error