1887

Abstract

Increased colonization by antimicrobial-resistant organisms is closely associated with international travel. This study investigated the diversity of mobile genetic elements involved with antimicrobial resistance (AMR) gene carriage in extended-spectrum beta-lactamase (ESBL)-producing that colonized travellers to Laos. Long-read sequencing was used to reconstruct complete plasmid sequences from 48 isolates obtained from the daily stool samples of 23 travellers over a 3 week period. This method revealed a collection of 105 distinct plasmids, 38.1 % (=40) of which carried AMR genes. The plasmids in this population were diverse, mostly unreported and included 38 replicon types, with F-type plasmids (=23) the most prevalent amongst those carrying AMR genes. Fine-scale analysis of all plasmids identified numerous AMR gene contexts and emphasized the importance of IS elements, specifically members of the ISIS family, in the evolution of complex multidrug resistance regions. We found a concerning convergence of ESBL and colistin resistance determinants, with three plasmids from two different F-type lineages carrying and genes. The extensive diversity seen here highlights the worrying probability that stable new vehicles for AMR will evolve in populations that can disseminate internationally through travel networks.

Funding
This study was supported by the:
  • Wellcome Trust
    • Principle Award Recipient: AnnE Snaith
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001000
2023-05-12
2024-11-05
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/5/mgen001000.html?itemId=/content/journal/mgen/10.1099/mgen.0.001000&mimeType=html&fmt=ahah

References

  1. Cosgrove SE. The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin Infect Dis 2006; 42 Suppl 2:S82–9 [View Article] [PubMed]
    [Google Scholar]
  2. Arcilla MS, Van Hattem JM, Bootsma MCJ, van Genderen PJJ, Goorhuis A et al. Prevalence and risk factors for carriage of ESBL-producing Enterobacteriaceae in a population of Dutch travellers: a cross-sectional study. Travel Med Infect Dis 2020; 33:101547 [View Article] [PubMed]
    [Google Scholar]
  3. Bevan ER, McNally A, Thomas CM, Piddock LJV, Hawkey PM. Acquisition and loss of CTX-M-producing and non-producing Escherichia coli in the fecal microbiome of travelers to South Asia. mBio 2018; 9:e02408-18 [View Article] [PubMed]
    [Google Scholar]
  4. Bokhary H, Pangesti KNA, Rashid H, Abd El Ghany M, Hill-Cawthorne GA. Travel-related antimicrobial resistance: a systematic review. Trop Med Infect Dis 2021; 6:11 [View Article] [PubMed]
    [Google Scholar]
  5. Woerther PL, Andremont A, Kantele A. Travel-acquired ESBL-producing Enterobacteriaceae: impact of colonization at individual and community level. J Travel Med 2017; 24:S29–S34 [View Article] [PubMed]
    [Google Scholar]
  6. Arcilla MS, van Hattem JM, Haverkate MR, Bootsma MCJ, van Genderen PJJ et al. Import and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae by international travellers (COMBAT study): a prospective, multicentre cohort study. Lancet Infect Dis 2017; 17:78–85 [View Article] [PubMed]
    [Google Scholar]
  7. Kantele A, Kuenzli E, Dunn SJ, Dance DAB, Newton PN et al. Dynamics of intestinal multidrug-resistant bacteria colonisation contracted by visitors to a high-endemic setting: a prospective, daily, real-time sampling study. Lancet Microbe 2021; 2:e151–e158 [View Article] [PubMed]
    [Google Scholar]
  8. Chaudhuri RR, Henderson IR. The evolution of the Escherichia coli phylogeny. Infect Genet Evol 2012; 12:214–226 [View Article] [PubMed]
    [Google Scholar]
  9. Rawat D, Nair D. Extended-spectrum β-lactamases in Gram negative bacteria. J Glob Infect Dis 2010; 2:263–274 [View Article] [PubMed]
    [Google Scholar]
  10. Stoesser N, Sheppard AE, Pankhurst L, De Maio N, Moore CE et al. Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. mBio 2016; 7:e02162 [View Article] [PubMed]
    [Google Scholar]
  11. Petty NK, Ben Zakour NL, Stanton-Cook M, Skippington E, Totsika M et al. Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci 2014; 111:5694–5699 [View Article] [PubMed]
    [Google Scholar]
  12. Organisation WH WHO Model List of Essential Medicines; 2017
  13. Meletis G. Carbapenem resistance: overview of the problem and future perspectives. Ther Adv Infect Dis 2016; 3:15–21 [View Article] [PubMed]
    [Google Scholar]
  14. Gharaibeh MH, Shatnawi SQ. An overview of colistin resistance, mobilized colistin resistance genes dissemination, global responses, and the alternatives to colistin: a review. Vet World 2019; 12:1735–1746 [View Article] [PubMed]
    [Google Scholar]
  15. Matamoros S, van Hattem JM, Arcilla MS, Willemse N, Melles DC et al. Global phylogenetic analysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bacterial diversity but plasmid restriction. Sci Rep 2017; 7:15364 [View Article] [PubMed]
    [Google Scholar]
  16. Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem 2009; 78:119–146 [View Article] [PubMed]
    [Google Scholar]
  17. Aghapour Z, Gholizadeh P, Ganbarov K, Bialvaei AZ, Mahmood SS et al. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect Drug Resist 2019; 12:965–975 [View Article] [PubMed]
    [Google Scholar]
  18. Furniss RCD, Kostrzewa M, Mavridou DAI, Larrouy-Maumus G. The clue is in the lipid A: rapid detection of colistin resistance. PLoS Pathog 2020; 16:e1008331 [View Article] [PubMed]
    [Google Scholar]
  19. Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist 2014; 7:167–176 [View Article] [PubMed]
    [Google Scholar]
  20. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 2018; 31:e00088-17 [View Article] [PubMed]
    [Google Scholar]
  21. Rozwandowicz M, Brouwer MSM, Fischer J, Wagenaar JA, Gonzalez-Zorn B et al. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother 2018; 73:1121–1137 [View Article] [PubMed]
    [Google Scholar]
  22. Hu Y, Moran RA, Blackwell GA, McNally A, Zong Z. Fine-scale reconstruction of the evolution of FII-33 multidrug resistance plasmids enables high-resolution genomic surveillance. mSystems 2022; 7:e0083121 [View Article] [PubMed]
    [Google Scholar]
  23. León-Sampedro R, DelaFuente J, Díaz-Agero C, Crellen T, Musicha P et al. Pervasive transmission of a carbapenem resistance plasmid in the gut microbiota of hospitalized patients. Nat Microbiol 2021; 6:606–616 [View Article] [PubMed]
    [Google Scholar]
  24. Harmer CJ. HI1 and I1 resistance plasmids from Salmonella enterica serovar Typhimurium strain SRC27 are epidemic. Microb Drug Resist 2021; 27:1495–1504 [View Article] [PubMed]
    [Google Scholar]
  25. Carattoli A, Hasman H. Plasmidfinder and in silico pMLST: identification and typing of plasmid replicons in Whole-Genome Sequencing (WGS). Methods Mol Biol 2020; 2075:285–294 [View Article] [PubMed]
    [Google Scholar]
  26. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020; 75:3491–3500 [View Article] [PubMed]
    [Google Scholar]
  27. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Curr Protoc Bioinformatics 2020; 70:e102 [View Article] [PubMed]
    [Google Scholar]
  28. De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 2018; 34:2666–2669 [View Article] [PubMed]
    [Google Scholar]
  29. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  30. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 2015; 31:3350–3352 [View Article] [PubMed]
    [Google Scholar]
  31. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  32. Borowiak M, Fischer J, Hammerl JA, Hendriksen RS, Szabo I et al. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J Antimicrob Chemother 2017; 72:3317–3324 [View Article] [PubMed]
    [Google Scholar]
  33. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  34. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [View Article] [PubMed]
    [Google Scholar]
  35. Villa L, García-Fernández A, Fortini D, Carattoli A. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother 2010; 65:2518–2529 [View Article] [PubMed]
    [Google Scholar]
  36. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–6 [View Article] [PubMed]
    [Google Scholar]
  37. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  38. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol 2020; 21:180 [View Article] [PubMed]
    [Google Scholar]
  39. Xie Z, Tang H. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes. Bioinformatics 2017; 33:3340–3347 [View Article] [PubMed]
    [Google Scholar]
  40. Moran RA, Holt KE, Hall RM. pCERC3 from a commensal ST95 Escherichia coli: a ColV virulence-multiresistance plasmid carrying a sul3-associated class 1 integron. Plasmid 2016; 84–85:11–19 [View Article] [PubMed]
    [Google Scholar]
  41. Cox KEL, Schildbach JF. Sequence of the R1 plasmid and comparison to F and R100. Plasmid 2017; 91:53–60 [View Article] [PubMed]
    [Google Scholar]
  42. Frost LS, Leplae R, Summers AO, Toussaint A. Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 2005; 3:722–732 [View Article] [PubMed]
    [Google Scholar]
  43. Tansirichaiya S, Rahman MA, Roberts AP. The transposon registry. Mob DNA 2019; 10:40 [View Article] [PubMed]
    [Google Scholar]
  44. Matlock W, Chau KK, AbuOun M, Stubberfield E, Barker L et al. Genomic network analysis of environmental and livestock F-type plasmid populations. ISME J 2021; 15:2322–2335 [View Article] [PubMed]
    [Google Scholar]
  45. Riley MA, Gordon DM. A survey of Col plasmids in natural isolates of Escherichia coli and an investigation into the stability of Col-plasmid lineages. J Gen Microbiol 1992; 138:1345–1352 [View Article] [PubMed]
    [Google Scholar]
  46. Ares-Arroyo M, Rocha EPC, Gonzalez-Zorn B. Evolution of ColE1-like plasmids across γ-Proteobacteria: from bacteriocin production to antimicrobial resistance. PLoS Genet 2021; 17:e1009919 [View Article] [PubMed]
    [Google Scholar]
  47. Moran RA, Hall RM. Analysis of pCERC7, a small antibiotic resistance plasmid from a commensal ST131 Escherichia coli, defines a diverse group of plasmids that include various segments adjacent to a multimer resolution site and encode the same NikA relaxase accessory protein enabling mobilisation. Plasmid 2017; 89:42–48 [View Article] [PubMed]
    [Google Scholar]
  48. Łobocka MB, Rose DJ, Plunkett G 3rd, Rusin M, Samojedny A et al. Genome of bacteriophage P1. J Bacteriol 2004; 186:7032–7068 [View Article] [PubMed]
    [Google Scholar]
  49. Pal C, Asiani K, Arya S, Rensing C, Stekel DJ et al. Metal resistance and its association with antibiotic resistance. Adv Microb Physiol 2017; 70:261–313 [View Article] [PubMed]
    [Google Scholar]
  50. Cheng G, Ning J, Ahmed S, Huang J, Ullah R et al. Selection and dissemination of antimicrobial resistance in Agri-food production. Antimicrob Resist Infect Control 2019; 8:158 [View Article] [PubMed]
    [Google Scholar]
  51. Vongdala N, Tran HD, Xuan TD, Teschke R, Khanh TD. Heavy metal accumulation in water, soil, and plants of municipal solid waste landfill in Vientiane, Laos. Int J Environ Res Public Health 2018; 16:22 [View Article] [PubMed]
    [Google Scholar]
  52. Yang H, Wei SH, Hobman JL, Dodd CER. Antibiotic and metal resistance in Escherichia coli isolated from pig Slaughterhouses in the United Kingdom. Antibiotics 2020; 9:746 [View Article] [PubMed]
    [Google Scholar]
  53. Falgenhauer L, Ghosh H, Guerra B, Yao Y, Fritzenwanker M et al. Comparative genome analysis of IncHI2 VIM-1 carbapenemase-encoding plasmids of Escherichia coli and Salmonella enterica isolated from a livestock farm in Germany. Vet Microbiol 2017; 200:114–117 [View Article] [PubMed]
    [Google Scholar]
  54. Ahmed S, Olsen JE, Herrero-Fresno A, Moreno-Hagelsieb G. The genetic diversity of commensal Escherichia coli strains isolated from non-antimicrobial treated pigs varies according to age group. PLoS One 2017; 12:e0178623 [View Article]
    [Google Scholar]
  55. Yamaguchi T, Kawahara R, Harada K, Teruya S, Nakayama T et al. The presence of colistin resistance gene mcr-1 and -3 in ESBL producing Escherichia coli isolated from food in Ho Chi Minh City, Vietnam. FEMS Microbiol Lett 2018; 365:11 [View Article]
    [Google Scholar]
  56. Rossolini GM, D’Andrea MM, Mugnaioli C. The spread of CTX-M-type extended-spectrum beta-lactamases. Clin Microbiol Infect 2008; 14 Suppl 1:33–41 [View Article] [PubMed]
    [Google Scholar]
  57. Harmer CJ, Moran RA, Hall RM. Movement of IS26-associated antibiotic resistance genes occurs via a translocatable unit that includes a single IS26 and preferentially inserts adjacent to another IS26. mBio 2014; 5:e01801–14 [View Article] [PubMed]
    [Google Scholar]
  58. Ford PJ, Avison MB. Evolutionary mapping of the SHV beta-lactamase and evidence for two separate IS26-dependent blaSHV mobilization events from the Klebsiella pneumoniae chromosome. J Antimicrob Chemother 2004; 54:69–75 [View Article] [PubMed]
    [Google Scholar]
  59. Hordijk J, Bosman AB, van Essen-Zandbergen A, Veldman K, Dierikx C et al. qnrB19 gene bracketed by IS26 on a 40-kilobase IncR plasmid from an Escherichia coli isolate from a veal calf. Antimicrob Agents Chemother 2011; 55:453–454 [View Article] [PubMed]
    [Google Scholar]
  60. Post V, Hall RM. AbaR5, a large multiple-antibiotic resistance region found in Acinetobacter baumannii. Antimicrob Agents Chemother 2009; 53:2667–2671 [View Article] [PubMed]
    [Google Scholar]
  61. Harmer CJ, Hall RM. IS26-mediated formation of transposons carrying antibiotic resistance genes. mSphere 2016; 1:e00038-16 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001000
Loading
/content/journal/mgen/10.1099/mgen.0.001000
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error