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Abstract

Ferroptotic cell death is a regulated process that is governed by iron-dependent membrane lipid peroxide accumulation that plays 
a pathogenic role in several disease-related settings. The use of ferroptosis-related genes (FRGs) to distinguish active tuberculosis 
(ATB) from latent tuberculosis infection (LTBI) among children, however, remains to be analysed. Tuberculosis-related gene expres-
sion data and FRG lists were obtained, respectively, from Gene Expression Omnibus (GEO) and FerrDb. Differentially expressed FRGs 
(DE-FRGs) detected when comparing samples from paediatric ATB and LTBI patients were explored using appropriate bioinformat-
ics techniques, after which enrichment analyses were performed for these genes and hub genes were identified, with these genes 
then being used to explore potential drug interactions and construct competing endogenous RNA (ceRNA) networks. The GSE39939 
dataset yielded 124 DE-FRGs that were primarily related to responses to oxidative, chemical and extracellular stimulus-associated 
stress. In total, the LASSO and SVM-RFE algorithms enabled the identification of nine hub genes (MAPK14, EGLN2, IDO1, USP11, 
SCD, CBS, PARP8, PARP16, CDC25A) that exhibited good diagnostic utility. Functional enrichment analyses of these genes suggested 
that they may govern ATB transition from LTBI through the control of many pathways, including the immune response, DNA repair, 
transcription, RNA degradation, and glycan and energy metabolism pathways. The CIBERSORT algorithm suggested that these 
genes were positively correlated with inflammatory and myeloid cell activity while being negatively correlated with the activity of 
lymphocytes. A total of 50 candidate drugs targeting 6 hub DE-FRGs were also identified, and a ceRNA network was used to explore 
the complex interplay among these hub genes. The nine hub FRGs defined in this study may serve as valuable biomarkers differen-
tiating between ATB and LTBI in young patients.

DATA SUMMARY
Two publicly available datasets were analysed in this study. These data can be found in the GSE39939 (https://www.ncbi.nlm.​
nih.gov/geo/query/acc.cgi?acc=GSE39939) and GSE39940 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39940) 
datasets.

Figshare data – https://doi.org/10.6084/m9.figshare.22105139.v1 [1].

INTRODUCTION
Tuberculosis (TB), which is an infection mediated by Mycobacterium tuberculosis (Mtb), is the deadliest pathogen-related cause of 
death in the world and one of the leading global causes of human mortality [2]. An estimated 500 000–1 000 000 children are affected 
by TB each year, of whom 226 000 die [3]. Of an estimated 2–3 billion individuals infected by Mtb, 5–15 % are expected to develop TB 
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at some point in their lives, with this risk being most pronounced among young children [4, 5]. The treatment of TB can be a complex 
and prolonged process, resulting in poor patient compliance, particularly in paediatric populations. The factors that ultimately govern 
the transition between active TB (ATB) and latent TB infection (LTBI) remain to be fully clarified, and the clinical differentiation 
between these two disease states remains challenging, despite being critical to providing patients with appropriate treatments aimed 
at curtailing further TB spread. The two approaches most frequently used to assess TB infection are the interferon-γ release assay 
(IGRA) and the tuberculin skin test (TST), but neither can distinguish between ATB and LTBI [6]. In children with TB suffering 
from malnourishment or human immunodeficiency virus (HIV) infection, TST or IGRA results may be non-reactive, while TSTs 
often shows false positives in BCG-vaccinated individuals [7], especially atypical manifestations in many cases, which complicate and 
delay TB diagnosis. There is thus a pressing need for the identification of alternative biomarkers that can reliably detect the different 
forms of TB infection in children.

Death of the host cells plays a critical role in controlling the progression of LTBI to ATB [8–10]. Several gene signatures have been 
identified that not only reveal the pathogenic mechanism but can also be used as novel biomarkers for distinguishing ATB from 
LTBI [8–11]. Ferroptotic cell death is a recently discovered process that is driven by the accumulation of excessively high iron levels 
within cells, contributing to lipid peroxidation and the lethal rupture of the cell membrane [12]. A potential role for ferroptosis in the 
Mtb-mediated induction of cell death has recently been described [13]. Specifically, the replication of Mtb within host macrophage 
cells can contribute to intracellular labile iron accumulation, together with higher levels of mitochondrial superoxide generation, lipid 
peroxidation and necrotic cell death. Notably, Mtb-infected macrophages exhibited increases in glutathione peroxidase 4 (GPX4) 
expression and glutathione (GSH) levels, which are closely associated with ferroptotic death. When these cells are treated with iron 
chelators or the lipid peroxidation inhibitor ferrostatin-1 (Fer-1), this can protect against lung tissue death while lowering the overall 
mycobacterial burden [13].

However, as most of the studies have been performed in animal models, data on ferroptosis in Mtb-infected clinical samples are scarce, 
particularly in paediatrics. In this study, the effectiveness of ferroptosis-related gene (FRG) signatures as biomarkers for the differentiation 
of ATB and LTBI in children was analysed, and a bioinformatics approach was used to explore the relationship between these genes 
and immune cell populations.

METHODS
Data source
For the present study, data were downloaded from the National Center for Biotechnology Information (NCBI) GEO database 
(http://www.ncbi.nlm.nih.gov/geo). Eligible data were derived from studies of children under 15 years of age who were HIV-
negative, with all sample collection having been performed before anti-mycobacterial treatment was initiated. These criteria 
were used to select the two largest datasets for analysis. The GSE39939 microarray training dataset comprised whole-blood 
samples from 52 and 14 Kenyan paediatric ATB and LTBI patients, respectively. The GSE39940 microarray validation dataset 
comprised whole-blood samples from 52 and 54 paediatric South African and Malawian ATB and LTBI patients, respectively. 
The latter of these two data datasets was used for hub gene validation. All patients with ATB had been diagnosed based on 
the confirmed isolation and culture of Mtb derived from respiratory samples together with clinical symptoms consistent 
with TB, or negative Mtb cultures together with clinical and radiological findings consistent with ATB. LTBI was diagnosed 
based on confirmed contact with individuals with positive TB smear results together with positive TST or IGRA results in 
the absence of any clinical or radiological signs of ATB on follow-up.

In total, 728 FRGs identified using FerrDb were analysed (File S1, available in the online version of this article). Potential 
drug interactions were explored with the Drug Gene Interaction Database (DGIdb), with the DrugBank database serving as 
a source of structural information regarding drugs predicted to target hub DE-FRGs.

Impact Statement

Establishing reliable biomarkers that can distinguish active tuberculosis (ATB) from latent tuberculosis infection (LTBI) in chil-
dren is urgent in terms of both appropriate treatment and the control of Mtb spread. Ferroptosis is a newly discovered process 
that has a potential role in the control of Mtb infection. However, most studies have been performed in animal models and 
data on ferroptosis in relation to Mtb infection in clinical samples are scarce, particularly in paediatrics. In this study, we used 
multiple bioinformatics approaches and identified nine ferroptosis-related gene signatures as biomarkers for accurate differ-
entiation between ATB and LTBI in children. Our study also offers insights into the molecular mechanisms by which childhood 
LTBI progresses to ATB.

http://www.ncbi.nlm.nih.gov/geo
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Differential expression analyses
The relative expression of individual FRG was compared between the ATB and LTBI groups in the GSE39939 dataset. 
DE-FRGs were identified using the ‘limma’ package in R, based on P-values <0.05 when compared via Student’s t-test analyses 
after determining the normality of the data distribution (File S2).

Functional enrichment analyses
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed with 
the R ‘clusterprofiler’ package, with an FDR <0.05 and an adjusted P-value <0.05 as the significance threshold. GO terms 
were classified into the biological process (BP), molecular function (MF) and cellular component (CC) categories. The top 
10 enriched terms are shown in this study.

Optimal diagnostic hub gene selection
The glmnet package was utilized to implement a LASSO algorithm to reduce data dimensionality, with DE-FRGs identified 
when comparing LTBI and ATB samples being retained for feature selection, and biomarkers of ATB then being selected 
through this algorithmic approach. The SVM package was additionally utilized to implement a support vector machine 
recursive feature elimination (SVM-RFE) model with 10-fold cross-validation. Optimal ATB-related marker genes were 
selected based on the overlap in gene sets generated by these two algorithmic strategies, and the diagnostic utility of these 
individual hub DE-FRGs was examined based on the use of the area under the receiver operating characteristic (ROC) 
curve (AUC) with corresponding analyses of accuracy, sensitivity and specificity from the GSE39939 dataset. A logistic 
regression model was further constructed using the combination of nine hub DE-FRGs to predict sample classification 
in the GSE39940 dataset using the ‘glm’ package in R, and ROC curves were used to validate the diagnostic utility of the 
model.

Immune cell analyses
The CIBERSORT algorithm [14] was leveraged to examine the expression of 22 different immune cell populations in samples 
from the GSE39939 dataset, and violin plots were used to represent the resultant data (Supplementary file 3). Associations 
between hub FRGs and immune cell populations were assessed with Spearman correlation analyses, and results were visual-
ized with the ‘corrplot’ package.

Single-gene-set enrichment analysis
The R GSEA (v.4.1.0) package was employed for single-sample gene set enrichment analysis (ssGSEA) analyses exploring 
pathways associated with hub FRGs by examining correlations between these genes and all other genes included within the 
GSE39939 dataset. These genes were then rank ordered based on the strength of these correlative relationships and served 
as the testing gene set, while the KEGG signalling pathway gene set was selected as a target for enrichment analyses within 
this gene set.

Single-gene-set variation enrichment analysis
The R GSVA package was used for gene set variation analysis (GSVA) analyses of each hub gene, using the KEGG pathway gene 
set as a background. Using the limma package, differences in GSVA scores for marker genes in the low- and high-expression 
groups were compared. Differences were screened with |t|>2 and P<0.05 as significance criteria, with t>0 and t<0 being indicative 
of pathway activation in the high and low-expression groups, respectively.

ceRNA network development
Interacting miRNAs associated with the identified hub DE-FRGs were detected with starBase. The mRNA sequences for 
these hub DE-FRGs were also downloaded from the NCBI, and miRbase was used to download human miRNA sequences, 
after which the TargetScan, miRDB and miRanda databases were used to predict miRNA target genes (File S4). StarBase was 
also used to screen for mRNA–lncRNA interactions (File S5), allowing for the construction of an mRNA–miRNA–lncRNA 
network.

Statistical analyses
Data were compared between groups with Student’s t-tests, while Pearson correlation analyses were employed when assessing 
associations among DE-FRGs. The Jvenn package was used for Venn diagram construction. All ceRNA networks were visual-
ized with Cytoscape. R (v 4.2.0) was employed for statistical analyses, and P<0.05 was the significance threshold.
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RESULTS
DE-FRG identification
In total, 124 FRGs were found to be differentially expressed when comparing LTBI and ATB samples in the GSE39939 dataset, 
of which 67 and 57 were upregulated and downregulated in ATB, respectively (Fig. 1a and File S2). Correlations among these 
genes are shown in Fig. 1b.

Functional DE-FRG analyses
GO and KEGG enrichment analyses were performed to better understand the biological roles played by the DE-FRGs in the 
context of paediatric ATB compared with LTBI. The DE-FRGs were found to be primarily associated with GO terms related to 
responses to oxidative stress, chemical stress, extracellular stimuli and nutrient levels (Fig. 2a), and with similar KEGG pathways 
(Fig. 2b). The findings thus suggested that ATB in children is associated with oxidative and chemical stress responses, nutrient 
levels and extracellular stimuli, in comparison with LTBI.

Identification of key DE-FRGs associated with paediatric ATB and LTBI
Using the GSE39939 training dataset, the LASSO and SVM-RFE machine learning algorithms were next implemented to identify 
hub DE-FRGs capable of reliably differentiating between paediatric LTBI and ATB patients. In LASSO analyses with 10-fold 
cross-validation-based penalty parameter tuning, 14 DE-FRGs were selected (Fig. 3a, b), while the SVM-RFE algorithm identified 
19 optimal genes [maximal accuracy =0.924, minimal root mean square error (RMSE) = 0.0762] (Fig. 3c, d). A comparison of 
these two gene sets yielded a list of nine candidate hub DE-FRGs (MAPK14, EGLN2, IDO1, USP11, SCD, CBS, PARP8, PARP16 
and CDC25A) that were retained for downstream analyses (Fig. 3e).

ROC curves were next used to gain insight into how reliably the hub DE-FRGs could differentiate between LTBI and ATB 
samples from the GSE39939 training dataset, yielding individual AUC values ranging from 0.6 to 0.9 (Fig. 4a). After development 
of a logistic regression model using the R ‘glm’ package, it was found that the AUC value for the combination of the nine hub 
DE-FRGs was 0.830 in the GSE39940 test dataset (Fig. 4b), thus demonstrating that the model is both accurate and specific for 
individual genes when distinguishing between ATB and LTBI samples. In addition, the expression of the identified hub DE-FRGs 
was analysed in the GSE39940 dataset. This showed that the expression of CBS (P=1.5e−08), MAPK14 (P=4.4e−14), PARP8 
(P=3.9e−11) and SCD (P=0.00077) was increased in samples from the ATB group, whereas the levels of EGLN2 (P=3.2e–10), 
PARP16 (P=1.4e–06) and USP11 (P=6.3e–07) were reduced compared with LTBI samples, consistent with the data from the 
GSE39930 training dataset (Fig. 5).

GSEA and GSVA analyses of identified hub DE-FRGs
To better understand the ability of the identified hub DE-FRGs to differentiate between samples from LTBI and ATB patients, 
a single-gene GSEA–KEGG pathway analysis was conducted. Strikingly, the majority of these genes were enriched in processes 
related to the immune response, DNA repair, transcription, RNA degradation, and carbohydrate and energy metabolism. 
GSVA analyses yielded similar results, indicating that high expression of MAPK14, EGLN2 and PARP16 may play a role 

Fig. 1. Expression levels of DE-FRGs in ATB and LTBI. (a) Heatmap showing the expression patterns of the DE-FRGs across samples. (b) Pearson 
correlation coefficients of these genes.
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in Mtb infection in children through the regulation of DNA repair and recombination, RNA degradation and the immune 
response (Table 1 and File S6). Similarly, GSVA analysis suggested that altered expression of the hub DE-FRGs induced ATB 
by regulating amino acid and glycan metabolism, DNA replication and the immune response (Fig. 6).

Relationship between immune cell populations and hub DE-FRGs
The CIBERSORT algorithm [14] was next leveraged to compare predicted differences in immune cell populations between the 
whole-blood samples from paediatric LTBI and ATB patients. This analysis revealed that ATB patient samples contained larger 
inflammatory cell populations, including neutrophils, macrophages, monocytes and dendritic cells (DCs), while the opposite was 
true for lymphocyte populations, including naïve B cells, naïve CD4+ T cells and activated CD8+ T cells (Fig. 7a). Hub DE-FRG 
expression was negatively correlated with lymphocyte activity yet positively correlated with the activity of inflammatory and 
myeloid cells. For example, a positive correlation was detected between MAPK14 expression and monocytes, neutrophils and M0 
macrophages, whereas this gene was negatively correlated with CD8+ T cells. PARP16 downregulation was negatively associated 
with naïve B cell and CD8+ T cell populations and positively correlated with monocyte and neutrophil populations. Moreover, 
CBS levels were positively correlated with monocytes, neutrophils and M0 macrophages, yet negatively related to naïve B cells 
and CD8+ T cells (Fig. 7b).

Identification of candidate hub DE-FRG-targeting drugs
Using DGIdb, 50 candidate drugs were identified and predicted to target 6 of the included hub DE-FRGs (MAPK14, CDC25A, 
CBS, SCD, EGLN2, IDO1) when using default interaction parameters. Cytoscape was used to visualize the resultant data 
(Fig. 8).

Establishment of a hub DE-FRG-based ceRNA network
Next, these hub DE-FRGs were used to define a ceRNA network comprising 447 nodes (9 DE-FRGs, 217 miRNAs,= and 
221 lncRNAs) and 558 edges (Fig. 9), highlighting the complex interactions among these genes. As an example, 16, 12 and 5 
lncRNAs were predicted to control SCD expression by respectively competitively binding hsa-miR-186–5 p, hsa-miR-18a-3p 
and miR-188–3 p. Moreover, the regulation of PARP16 was putatively controlled by the respective competitive binding 

Fig. 2. Functional analyses of the DE-FRGs. (a) GO enrichment and (b) KEGG analyses indicated that the DE-FRGs were significantly associated with 
pathways involving oxidative stress, chemical stress, nutrient levels, extracellular stimuli and the regulation of autophagy (Fisher’s test).
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of 9, 7 and 3 lncRNAs to hsa-miR-214–3 p, hsa-miR-539–5 p and hsa-miR-877–3 p. The lncRNA RP4-539M6.22 was also 
predicted to be capable of controlling SCD, MAPK14, PARP8, PARP16 and EGLN2 expression through interactions with 
hsa-miR-922, hsa-miR-486–3 p, hsa-miR-302a-3p, hsa-miR-766–3 p and hsa-miR-1207–5 p. For further details regarding 
this ceRNA network, see File S7.

Fig. 3. Nine hub DE-FRGs were identified as diagnostic genes for the progression of ATB from LTBI. (a, b) LASSO logistic regression, with penalty 
parameter tuning conducted by 10-fold cross-validation was used to select 14 ATB-related features. (c, d) The SVM-RFE algorithm was used to filter 
the 19 DE-FRGs to identify the optimal combinations of specific genes. Finally, nine genes (maximal accuracy, 0.924; minimal RMSE, 0.0762) were 
identified as the optimal genes. (e) Marker genes obtained from the LASSO and SVM-RFE models.

Fig. 4. The use of nine hub DE-FRGs as tools for the differentiation between individuals with ATB and LTBI. (a) ROC curves for the nine individual 
marker genes from the GSE39939 dataset. (b) Logistic regression model for determining the AUC of differentiation between disease samples from the 
GSE39940 dataset using the combination of nine hub DE-FRGs.
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DISCUSSION
The death of host cells is essential for the appropriate regulation of Mtb infections, preventing mycobacterial growth and 
spread [8–10]. While apoptotic death is a defensive strategy engaged by cells combatting intracellular pathogens [9], necrotic 
death is unregulated such that it can allow Mtb to spread to proximal cells upon lytic death [10]. Ferroptotic death shares 
certain characteristics with both apoptosis and necrosis, and has been reported to promote the growth and dissemination 
of Mtb, contributing to lethal outcomes in infected mice [12, 13]. Here, a series of systematic bioinformatics analyses were 

Fig. 5. Expression of the marker genes in the validation dataset (GSE39940). The expression of MAPK14 (a), CBS (e),  SCD (d)  and PARP8 (f)  was 
increased, while that of EGLN2 (b), USP11 (c) and PARP16 (g) was reduced in the ATB group compared with the LTBI group, consistent with the data 
from the GSE39930 training dataset.

Table 1. Single-gene GSEA–KEGG pathway analysis for the nine hub DE-FRGs

Gene Expression level in ATB Enrichment pathways (top 3)

PARP16 Downregulation
KEGG_LYSINE_DEGRADATION
KEGG_RNA_DEGRADATION
KEGG_HOMOLOGOUS_RECOMBINATION

PARP8 Upregulation
KEGG_RNA_DEGRADATION
KEGG_HOMOLOGOUS_RECOMBINATION
KEGG_PROXIMAL_TUBULE_BICARBONATE_RECLAMATION

CBS Upregulation
KEGG_PYRIMIDINE_METABOLISM
KEGG_RNA_DEGRADATION
KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY

SCD Upregulation
KEGG_HUNTINGTONS_DISEASE
KEGG_OXIDATIVE_PHOSPHORYLATION
KEGG_CARDIAC_MUSCLE_CONTRACTION

USP11 Downregulation
KEGG_RNA_DEGRADATION
KEGG_HOMOLOGOUS_RECOMBINATION
KEGG_N_GLYCAN_BIOSYNTHESIS

IDO1 Downregulation
KEGG_PYRIMIDINE_METABOLISM
KEGG_SPLICEOSOME
KEGG_INSULIN_SIGNALING_PATHWAY

EGLN2 Downregulation
KEGG_ADHERENS_JUNCTION
KEGG_NON_HOMOLOGOUS_END_JOINING
KEGG_RNA_DEGRADATION

MAPK14 Upregulation
KEGG_HUNTINGTONS_DISEASE
KEGG_OXIDATIVE_PHOSPHORYLATION
KEGG_RNA_DEGRADATION

CDC25A Upregulation
KEGG_ADHERENS_JUNCTION
KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_KERATAN_SULFATE
KEGG_TGF_BETA_SIGNALING_PATHWAY
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used to explore important FRGs associated with the differentiation of ATB from LTBI in children. The relationship between 
these key FRGs and immune cell function was also analysed, as were related biological functions in an effort to offer further 
insight into the potential pathogenic mechanisms that govern ATB onset.

Of the nine hub DE-FRGs identified in this analysis, the three that exhibited the greatest predictive utility when differentiating 
between paediatric LTBI and ATB samples were EGLN2, MAPK14 and PARP16. Mitogen-activated protein kinase 14 (MAPK14) 
is an important driver of ferroptosis such that inhibiting the kinase activity of this protein in vitro can disrupt ferroptotic death 
[15]. Consistent with the present findings, Petrilli et al. [16] reported a significant increase in MAPK14 mRNA levels in ATB 
patient samples that could reliably distinguish these samples from those of LTBI patients. However, these previous studies did not 
focus specifically on ferroptosis-related genes and paediatrics, which may be the reason why several genes that were previously 
observed to distinguish ATB from LTB1 were not identified in our study [17]. Poly (ADP-ribose) polymerases (PARP) family 
members are cytosolic and nuclear proteins that play diverse roles in metabolic regulation, transcriptional control, DNA repair, 
the maintenance of genomic integrity and DNA methylation, and programmed cell death responses [18]. In ovarian cancer cells, 

Fig. 6. High- and low-expression groups based on the expression levels of each marker gene combined with GSVA. PARP16 (a), PARP8 (b), CBS (c), SCD 
(d), USP11 (e), IDO1(f), EGLN2 (g), MAPK14 (h) and CDC25A(i).

Fig. 7. Immune landscape analysis. (a) The CIBERSORT algorithm was used to explore differences in the immune microenvironments between ATB 
and LTBI paediatric patients. (b) Pearson correlation analysis revealed that the expression levels of the hub DE-FRGss were positively correlated with 
myeloid and inflammatory cell populations but negatively correlated with lymphocyte levels.
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treatment with the PARP inhibitor Olaparib can trigger ferroptotic death through the suppression of light chain subunit solute 
carrier family 7 member 11 (SLC7A11)-mediated GSH biosynthesis [19]. The upregulation of pro-ferroptotic genes such as 
MAPK14, CBS and SCD, together with the downregulation of PARP16 and other anti-ferroptotic genes may play a key role in Mtb 
dissemination over the course of LTBI progression to ATB. The EGLN proline hydroxylase family member EGLN2 [20] has also 
been linked to ferroptosis such that EGLN2 suppression can limit the ability of the small molecule cystine-glutamate exchanger 
system x or GPX4 inhibitor RSL-3 to induce ferroptosis [21]. Given that ferroptosis entails high levels of inflammation and tissue 
damage related to the release of intracellular compounds [22], downregulating pro-ferroptotic genes such as EGLN2, USP11 and 
IDO1 while upregulating anti-ferroptotic factors like CDC25A and PARP8 may help to limit Mtb spread and associated damage.

The immune response is central to the control and dissemination of Mtb within infected hosts [23]. In line with previous findings 
[24–28], the analysis of immune cells in the present study showed significant increases in inflammatory and myeloid cell popula-
tions such as neutrophils, monocytes and DCs in samples from ATB patients compared with LTB1 samples, whereas B and T 
cell levels showed the opposite trend. In their prior analyses of samples from ATB patients, Berry et al. [24] observed decreases 
in the expression of B and T cell-specific genes, and were able to confirm that effector and central memory T cell responses were 
reduced in these patients using a flow cytometry-based validation strategy. This aligns well with recent evidence highlighting 
a link between the monocyte/lymphocyte ratio and the odds of ATB onset following Mtb infection [25, 26]. Adaptive cellular 
immune responses are important mediators of the establishment of chronic LTBI infections, with CD4+ T cell-derived cytokines 
serving to enhance CD8+ T cell proliferation and the production of antibodies by B cells in a manner that can aid in the control 
of Mtb-infected macrophages. Indeed, Mtb-reactive MHC-I restricted CD8+ T cells can protect against Mtb dissemination in 
human LTBI patients, while B cells can function in germinal centres to generate antibodies that can coordinate adaptive and 
innate immune responses by improving antigen presentation to T cells and generating cytokines capable of augmenting ongoing 
immune responses [23, 27, 28]. Granuloma formation and Mtb infection course can be profoundly shaped by such T cell activity 
and antibody production [27, 28]. In an integrated analysis of eight distinct TB-focused microarray datasets, Joosten et al. [29] 
determined that TREM1 signalling activity was closely related to the ATB-associated activity of myeloid cells. At a functional 
level, the expression of TREM1 was able to strengthen monocytic and neutrophil-mediated inflammatory responses. When 
lymphocytic responses are impaired, this often favours poorer Mtb control such that LTBI can progress to ATB. In ATB patients, 
bacterial spread and associated tissue damage can drive high levels of persistent inflammatory activity, in turn promoting DC, 
neutrophil, monocyte and macrophage proliferation. Ferroptotic cell death has been shown to be more immunogenic and 
pro-inflammatory than apoptotic death, potentially serving as an initiating proinflammatory event [30, 31]. Here, several of the 
identified hub DE-FRGs were found to be enriched in immune and inflammatory response pathways. Moreover, these FRGs 

Fig. 8. Prediction of marker gene-targeted drugs. Drugs that may target marker genes were identified using the DGIdb database, together with the 
associations between them. Red and green represent the expression levels of upregulated and downregulated genes, respectively, in ATB compared 
with LTBI.
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were correlated with inflammatory and lymphocyte cell populations in opposing directions, in line with the above data. However, 
some genes may play different roles in different sites of infection. For example, MAPK14 deletion led to increased recruitment 
of macrophages and neutrophils in mouse CNS injuries [32]. Additionally, these results are merely correlative, and additional 
research will be required to assess potential causality.

Lastly, candidate drugs with the potential to target these hub genes were identified, and a ceRNA network was established. These 
drugs included the p38 MAPK inhibitor doramapimod. In vitro, p38 MAPK signalling is important for a range of stress-related 
and inflammatory responses in host cells infected by Mtb [33]. Hölscher et al. [34] found that using doramapimod to treat mice 
infected with Mtb was sufficient to reduce inflammatory activity, lung pathology and granuloma formation without causing any 
pronounced toxicity. Combining doramapimod and standard antibiotic regimens in these animals also lowered the mycobacterial 
burden in the spleen and lungs more readily than antibiotic treatment in isolation. Given these findings and the present results, 
doramapimod represents an attractive tool to protect against LTBI progression to ATB in paediatric populations through the 

Fig. 9. ceRNA networks based on marker genes. The ceRNA network comprised 447 nodes (9 hub DE-FRGs, 217 miRNAs and 221 lncRNAs) and 558 
edges, highlighting the complex interactions among these hub genes.
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inhibition of ferroptotic activity. Mtb infection can also alter host miRNA expression profiles [35], with such miRNA dysregulation 
potentially altering the induction of innate immune responses or bacterial replication [36, 37]. While the specific benefits and 
roles of the candidate drugs and non-coding RNAs identified herein remain to be established, they provide a strong foundation 
for future research.

This study is subject to multiple limitations. For one, this was a small retrospective analysis, potentially limiting the accuracy 
of these results. Additionally, the specific focus on subsets of hub genes specifically associated with ferroptosis may have led to 
our overlooking the relevance of many other important genes associated with the transition between ATB and LTBI during the 
process of prognostic model construction. Furthermore, while this study did identify multiple FRGs associated with paediatric 
ATB compared to LTBI, all of these samples were derived from children in Africa and have the potential to not be unique to Mtb 
infection or to not be generalizable to other ethnic groups. As such, additional in vitro and in vivo analyses will be vital to fully 
understand how these FRGs govern the progression of childhood ATB to LTBI.

CONCLUSIONS
In summary, in this study nine hub FRGs were identified as candidate biomarkers for distinguishing between ATB and LTBI in 
children. Furthermore, they may potentially participate in the pathogenic process governing the transition between ATB and 
LTBI patients in a paediatric population. These genes thus offer value in diagnosis and treatment of Mtb infection in children.
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