1887

Abstract

sp. ATCC 39006 is a Gram-negative bacterium that has been used to study the function of phage defences, such as CRISPR–Cas, and phage counter-defence mechanisms. To expand our phage collection to study the phage–host interaction with sp. ATCC 39006, we isolated the T4-like myovirus LC53 in Ōtepoti Dunedin, Aotearoa New Zealand. Morphological, phenotypic and genomic characterization revealed that LC53 is virulent and similar to other , and phages belonging to the genus . Using a transposon mutant library, we identified the host gene as essential for phage infection, suggesting that it encodes the phage receptor. The genome of LC53 encodes all the characteristic T4-like core proteins involved in phage DNA replication and generation of viral particles. Furthermore, our bioinformatic analysis suggests that the transcriptional organization of LC53 is similar to that of phage T4. Importantly, LC53 encodes 18 tRNAs, which likely compensate for differences in GC content between phage and host genomes. Overall, this study describes a newly isolated phage infecting sp. ATCC 39006 that expands the diversity of phages available to study phage–host interactions.

Funding
This study was supported by the:
  • Marsden Fund
    • Principle Award Recipient: PeterC Fineran
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000968
2023-03-30
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/3/mgen000968.html?itemId=/content/journal/mgen/10.1099/mgen.0.000968&mimeType=html&fmt=ahah

References

  1. Dion MB, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. Nat Rev Microbiol 2020; 18:125–138 [View Article] [PubMed]
    [Google Scholar]
  2. Nobrega FL, Vlot M, de Jonge PA, Dreesens LL, Beaumont HJE et al. Targeting mechanisms of tailed bacteriophages. Nat Rev Microbiol 2018; 16:760–773 [View Article] [PubMed]
    [Google Scholar]
  3. Koonin EV, Makarova KS, Wolf YI. Evolutionary genomics of defense systems in archaea and bacteria. Annu Rev Microbiol 2017; 71:233–261 [View Article]
    [Google Scholar]
  4. Gao L, Altae-Tran H, Böhning F, Makarova KS, Segel M et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 2020; 369:1077–1084 [View Article] [PubMed]
    [Google Scholar]
  5. Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 2018; 359:eaar4120 [View Article] [PubMed]
    [Google Scholar]
  6. Millman A, Melamed S, Leavitt A, Doron S, Bernheim A et al. An expanding arsenal of immune systems that protect bacteria from phages. Microbiology 20222022 [View Article]
    [Google Scholar]
  7. Vassallo C, Doering C, Littlehale ML, Teodoro G, Laub MT. Mapping the landscape of anti-phage defense mechanisms in the E. coli pangenome. Microbiology 2022; 148:1367–1378 [View Article]
    [Google Scholar]
  8. Parker WL, Rathnum ML, Wells JS, Trejo WH, Principe PA et al. SQ 27,860, a simple carbapenem produced by species of Serratia and Erwinia. J Antibiot 1982; 35:653–660 [View Article]
    [Google Scholar]
  9. Duprey A, Taib N, Leonard S, Garin T, Flandrois J-P et al. The phytopathogenic nature of Dickeya aquatica 174/2 and the dynamic early evolution of Dickeya pathogenicity. Environ Microbiol 2019; 21:2809–2835 [View Article] [PubMed]
    [Google Scholar]
  10. Thomson NR, Crow MA, McGowan SJ, Cox A, Salmond GP. Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol 2000; 36:539–556 [View Article] [PubMed]
    [Google Scholar]
  11. Fineran PC, Slater H, Everson L, Hughes K, Salmond GPC. Biosynthesis of tripyrrole and beta-lactam secondary metabolites in Serratia: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Mol Microbiol 2005; 56:1495–1517 [View Article] [PubMed]
    [Google Scholar]
  12. Hampton HG, Smith LM, Ferguson S, Meaden S, Jackson SA et al. Functional genomics reveals the toxin-antitoxin repertoire and AbiE activity in Serratia. Microb Genom 2020; 6:11 [View Article] [PubMed]
    [Google Scholar]
  13. Patterson AG, Jackson SA, Taylor C, Evans GB, Salmond GPC et al. Quorum sensing controls adaptive immunity through the regulation of multiple CRISPR-Cas systems. Mol Cell 2016; 64:1102–1108 [View Article]
    [Google Scholar]
  14. Smith LM, Jackson SA, Malone LM, Ussher JE, Gardner PP et al. The Rcs stress response inversely controls surface and CRISPR-Cas adaptive immunity to discriminate plasmids and phages. Nat Microbiol 2021; 6:162–172 [View Article] [PubMed]
    [Google Scholar]
  15. Jackson SA, Birkholz N, Malone LM, Fineran PC. Imprecise spacer acquisition generates CRISPR-Cas immune diversity through primed adaptation. Cell Host Microbe 2019; 25:250–260 [View Article]
    [Google Scholar]
  16. Malone LM, Warring SL, Jackson SA, Warnecke C, Gardner PP et al. A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nat Microbiol 2020; 5:48–55 [View Article]
    [Google Scholar]
  17. Malone LM, Hampton HG, Morgan XC, Fineran PC. Type I CRISPR-Cas provides robust immunity but incomplete attenuation of phage-induced cellular stress. Nucleic Acids Res 2022; 50:160–174 [View Article] [PubMed]
    [Google Scholar]
  18. Chen B, Akusobi C, Fang X, Salmond GPC. Environmental T4-family bacteriophages evolve to escape abortive infection via multiple routes in a bacterial host employing “Altruistic Suicide” through type III toxin-antitoxin systems. Front Microbiol 2017; 8:1006 [View Article]
    [Google Scholar]
  19. Mesarich CH, Rees-George J, Gardner PP, Ghomi FA, Gerth ML et al. Transposon insertion libraries for the characterization of mutants from the kiwifruit pathogen Pseudomonas syringae pv. actinidiae. PLoS One 2017; 12:e0172790 [View Article]
    [Google Scholar]
  20. Frampton RA, Taylor C, Holguín Moreno AV, Visnovsky SB, Petty NK et al. Identification of bacteriophages for biocontrol of the kiwifruit canker phytopathogen Pseudomonas syringae pv. actinidiae. Appl Environ Microbiol 2014; 80:2216–2228 [View Article]
    [Google Scholar]
  21. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  22. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article] [PubMed]
    [Google Scholar]
  23. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  24. Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res 2013; 41:12 [View Article] [PubMed]
    [Google Scholar]
  25. Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 2018; 430:2237–2243 [View Article]
    [Google Scholar]
  26. Lowe TM, Chan PP. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 2016; 44:W54–7 [View Article] [PubMed]
    [Google Scholar]
  27. Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 2004; 32:11–16 [View Article] [PubMed]
    [Google Scholar]
  28. Ramsey J, Rasche H, Maughmer C, Criscione A, Mijalis E et al. Galaxy and Apollo as a biologist-friendly interface for high-quality cooperative phage genome annotation. PLoS Comput Biol 2020; 16:e1008214 [View Article]
    [Google Scholar]
  29. Meier-Kolthoff JP, Göker M. VICTOR: genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics 2017; 33:3396–3404 [View Article] [PubMed]
    [Google Scholar]
  30. Moraru C, Varsani A, Kropinski AM. VIRIDIC-a novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. Viruses 2020; 12:1268 [View Article]
    [Google Scholar]
  31. Gilchrist CLM, Chooi YH. Clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 2021btab007 [View Article]
    [Google Scholar]
  32. Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol 2017; 35:1026–1028 [View Article] [PubMed]
    [Google Scholar]
  33. Hong H, Patel DR, Tamm LK, van den Berg B. The outer membrane protein OmpW forms an eight-stranded beta-barrel with a hydrophobic channel. J Biol Chem 2006; 281:7568–7577 [View Article] [PubMed]
    [Google Scholar]
  34. Pilsl H, Smajs D, Braun V. Characterization of colicin S4 and its receptor, OmpW, a minor protein of the Escherichia coli outer membrane. J Bacteriol 1999; 181:3578–3581 [View Article]
    [Google Scholar]
  35. Abedon ST. Lysis from without. Bacteriophage 2011; 1:46–49 [View Article] [PubMed]
    [Google Scholar]
  36. Wilson JH. Function of the bacteriophage T4 transfer RNA’s. J Mol Biol 1973; 74:753–757 [View Article] [PubMed]
    [Google Scholar]
  37. Delesalle VA, Tanke NT, Vill AC, Krukonis GP. Testing hypotheses for the presence of tRNA genes in mycobacteriophage genomes. Bacteriophage 2016; 6:e1219441 [View Article]
    [Google Scholar]
  38. Limor-Waisberg K, Carmi A, Scherz A, Pilpel Y, Furman I. Specialization versus adaptation: two strategies employed by cyanophages to enhance their translation efficiencies. Nucleic Acids Res 2011; 39:6016–6028 [View Article] [PubMed]
    [Google Scholar]
  39. Petrov VM, Ratnayaka S, Nolan JM, Miller ES, Karam JD. Genomes of the T4-related bacteriophages as windows on microbial genome evolution. Virol J 2010; 7:292 [View Article]
    [Google Scholar]
  40. Wilkens K, Rüger W. Characterization of bacteriophage T4 early promoters in vivo with a new promoter probe vector. Plasmid 1996; 35:108–120 [View Article] [PubMed]
    [Google Scholar]
  41. Kashlev M, Nudler E, Goldfarb A, White T, Kutter E. Bacteriophage T4 Alc protein: a transcription termination factor sensing local modification of DNA. Cell 1993; 75:147–154 [View Article] [PubMed]
    [Google Scholar]
  42. Severinov K, Kashlev M, Severinova E, Bass I, McWilliams K et al. A non-essential domain of Escherichia coli RNA polymerase required for the action of the termination factor Alc. J Biol Chem 1994; 269:14254–14259
    [Google Scholar]
  43. Hinton DM, Pande S, Wais N, Johnson XB, Vuthoori M et al. Transcriptional takeover by sigma appropriation: remodelling of the sigma70 subunit of Escherichia coli RNA polymerase by the bacteriophage T4 activator MotA and co-activator AsiA. Microbiology 2005; 151:1729–1740 [View Article]
    [Google Scholar]
  44. Hinton DM, March-Amegadzie R, Gerber JS, Sharma M. Bacteriophage T4 middle transcription system: T4-modified RNA polymerase; AsiA, a sigma 70 binding protein; and transcriptional activator MotA. Methods Enzymol 1996; 274:43–57 [View Article]
    [Google Scholar]
  45. Hinton DM. Transcriptional control in the prereplicative phase of T4 development. Virol J 2010; 7:289 [View Article] [PubMed]
    [Google Scholar]
  46. Chiurazzi M, Pulitzer JF. Characterisation of the bacteriophage T4 comC alpha 55.6 and comCJ mutants. A possible role in an antitermination process. FEMS Microbiol Lett 1998; 166:187–195 [View Article] [PubMed]
    [Google Scholar]
  47. Tiemann B, Depping R, Gineikiene E, Kaliniene L, Nivinskas R et al. ModA and ModB, two ADP-ribosyltransferases encoded by bacteriophage T4: catalytic properties and mutation analysis. J Bacteriol 2004; 186:7262–7272 [View Article] [PubMed]
    [Google Scholar]
  48. Pène C, Uzan M. The bacteriophage T4 anti-sigma factor AsiA is not necessary for the inhibition of early promoters in vivo. Mol Microbiol 2000; 35:1180–1191 [View Article] [PubMed]
    [Google Scholar]
  49. Hirano N, Ohshima H, Takahashi H. Biochemical analysis of the substrate specificity and sequence preference of endonuclease IV from bacteriophage T4, a dC-specific endonuclease implicated in restriction of dC-substituted T4 DNA synthesis. Nucleic Acids Res 2006; 34:4743–4751 [View Article] [PubMed]
    [Google Scholar]
  50. Carlson K, Lagerbäck P, Nyström A-C. Bacteriophage T4 endonuclease II: concerted single-strand nicks yield double-strand cleavage. Mol Microbiol 2004; 52:1403–1411 [View Article] [PubMed]
    [Google Scholar]
  51. Geiduschek EP, Kassavetis GA. Transcription of the T4 late genes. Virol J 2010; 7:288 [View Article] [PubMed]
    [Google Scholar]
  52. Christensen AC, Young ET. T4 late transcripts are initiated near a conserved DNA sequence. Nature 1982; 299:369–371 [View Article] [PubMed]
    [Google Scholar]
  53. Black LW. Old, new, and widely true: the bacteriophage T4 DNA packaging mechanism. Virology 2015; 479–480:650–656 [View Article]
    [Google Scholar]
  54. Knezevic P, Adriaenssens EM, Ictv Report C. ICTV virus taxonomy profile: inoviridae. J Gen Virol 2021; 102: [View Article]
    [Google Scholar]
  55. Ackermann HW, Krisch HM. A catalogue of T4-type bacteriophages. Arch Virol 1997; 142:2329–2345 [View Article] [PubMed]
    [Google Scholar]
  56. Ackermann HW. 5500 Phages examined in the electron microscope. Arch Virol 2007; 152:227–243 [View Article] [PubMed]
    [Google Scholar]
  57. Petrzik K, Brázdová S, Krawczyk K. Novel viruses that lyse plant and human strains of Kosakonia cowanii. Viruses 2021; 13:1418 [View Article]
    [Google Scholar]
  58. Hadas H, Einav M, Fishov I, Zaritsky A. Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology (Reading) 1997; 143 (Pt 1):179–185 [View Article]
    [Google Scholar]
  59. Storms ZJ, Brown T, Cooper DG, Sauvageau D, Leask RL. Impact of the cell life-cycle on bacteriophage T4 infection. FEMS Microbiol Lett 2014; 353:63–68 [View Article] [PubMed]
    [Google Scholar]
  60. Choi CP, Kuatsjah E, Wu ED, Yuan S. The effect of cell size on the burst size of T4 bacteriophage infections of Escherichia coli B 232010. J Exp Microbiol Immunol 2010; 14:85–91
    [Google Scholar]
  61. Comeau AM, Bertrand C, Letarov A, Tétart F, Krisch HM. Modular architecture of the T4 phage superfamily: a conserved core genome and a plastic periphery. Virology 2007; 362:384–396 [View Article] [PubMed]
    [Google Scholar]
  62. Yu F, Mizushima S. Roles of lipopolysaccharide and outer membrane protein OmpC of Escherichia coli K-12 in the receptor function for bacteriophage T4. J Bacteriol 1982; 151:718–722 [View Article]
    [Google Scholar]
  63. Bartual SG, Otero JM, Garcia-Doval C, Llamas-Saiz AL, Kahn R et al. Structure of the bacteriophage T4 long tail fiber receptor-binding tip. Proc Natl Acad Sci U S A 2010; 107:20287–20292 [View Article] [PubMed]
    [Google Scholar]
  64. Suga A, Kawaguchi M, Yonesaki T, Otsuka Y. Manipulating interactions between T4 phage long tail fibers and Escherichia coli receptors. Appl Environ Microbiol 2021; 87:e0042321 [View Article]
    [Google Scholar]
  65. Petrov VM, Nolan JM, Bertrand C, Levy D, Desplats C et al. Plasticity of the gene functions for DNA replication in the T4-like phages. J Mol Biol 2006; 361:46–68 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000968
Loading
/content/journal/mgen/10.1099/mgen.0.000968
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error