1887

Abstract

(syn. ) is a widespread gastrointestinal protozoan parasite with debated taxonomic status. Currently, eight distinct genetic sub-groups, termed assemblages A–H, are defined based on a few genetic markers. Assemblages A and B may represent distinct species and are both of human public health relevance. Genomic studies are scarce and the few reference genomes available, in particular for assemblage B, are insufficient for adequate comparative genomics. Here, by combining long- and short-read sequences generated by PacBio and Illumina sequencing technologies, we provide nine annotated genome sequences for reference from new clinical isolates (four assemblage A and five assemblage B parasite isolates). Isolates chosen represent the currently accepted classification of sub-assemblages AI, AII, BIII and BIV. Synteny over the whole genome was generally high, but we report chromosome-level translocations as a feature that distinguishes assemblage A from B parasites. Orthologue gene group analysis was used to define gene content differences between assemblage A and B and to contribute a gene-set-based operational definition of respective taxonomic units. is tetraploid, and high allelic sequence heterogeneity (ASH) for assemblage B vs. assemblage A has been observed so far. Noteworthy, here we report an extremely low ASH (0.002%) for one of the assemblage B isolates (a value even lower than the reference assemblage A isolate WB-C6). This challenges the view of low ASH being a notable feature that distinguishes assemblage A from B parasites, and low ASH allowed assembly of the most contiguous assemblage B genome currently available for reference. In conclusion, the description of nine highly contiguous genome assemblies of new isolates of assemblage A and B adds to our understanding of the genomics and species population structure of this widespread zoonotic parasite.

Funding
This study was supported by the:
  • Horizon 2020 (Award 643476 (COMPARE project))
    • Principle Award Recipient: SimoneM. Cacciò
  • Western Norway Regional Health Authority (Award 911571 and 912245)
    • Principle Award Recipient: NinaLangeland
  • Western Norway Regional Health Authority (Award 911897)
    • Principle Award Recipient: KurtHanevik
  • Charles University, Prague, Czech Republic (Award PRIMUS/20/MED/008)
    • Principle Award Recipient: FilipWeisz
  • Horizon 2020 (Award 773830 (PARADISE project))
    • Principle Award Recipient: SimoneM. Cacciò
  • Horizon 2020 (Award 773830 (PARADISE project))
    • Principle Award Recipient: MarcoLalle
  • Horizon 2020 (Award 773830 (PARADISE project))
    • Principle Award Recipient: ChristianKlotz
  • Deutsche Forschungsgemeinschaft (Award Priority Program SPP 2332)
    • Principle Award Recipient: ToniAebischer
  • Deutsche Forschungsgemeinschaft (Award Priority Program SPP 2332)
    • Principle Award Recipient: ChristianKlotz
  • Deutsche Forschungsgemeinschaft (Award GRK2046 Research Training Program)
    • Principle Award Recipient: ToniAebischer
  • Deutsche Forschungsgemeinschaft (Award GRK2046 Research Training Program)
    • Principle Award Recipient: ChristianKlotz
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000963
2023-03-28
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/3/mgen000963.html?itemId=/content/journal/mgen/10.1099/mgen.0.000963&mimeType=html&fmt=ahah

References

  1. Cacciò SM, Lalle M, Svärd SG. Host specificity in the Giardia duodenalis species complex. Infect Genet Evol 2018; 66:335–345 [View Article]
    [Google Scholar]
  2. Klotz C, Aebischer T. The immunological enigma of human giardiasis. Curr Trop Med Rep 2015; 2:119–127 [View Article]
    [Google Scholar]
  3. Lalle M, Hanevik K. Treatment-refractory giardiasis: challenges and solutions. Infect Drug Resist 2018; 11:1921–1933 [View Article]
    [Google Scholar]
  4. Monis PT, Caccio SM, Thompson RCA. Variation in Giardia: towards a taxonomic revision of the genus. Trends Parasitol 2009; 25:93–100 [View Article]
    [Google Scholar]
  5. Ankarklev J, Lebbad M, Einarsson E, Franzén O, Ahola H et al. A novel high-resolution multilocus sequence typing of Giardia intestinalis Assemblage A isolates reveals zoonotic transmission, clonal outbreaks and recombination. Infect Genet Evol 2018; 60:7–16 [View Article]
    [Google Scholar]
  6. Feng Y, Xiao L. Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clin Microbiol Rev 2011; 24:110–140 [View Article]
    [Google Scholar]
  7. Ryan U, Cacciò SM. Zoonotic potential of Giardia. Int J Parasitol 2013; 43:943–956 [View Article]
    [Google Scholar]
  8. Adam RD, Dahlstrom EW, Martens CA, Bruno DP, Barbian KD et al. Genome sequencing of Giardia lamblia genotypes A2 and B isolates (DH and GS) and comparative analysis with the genomes of genotypes A1 and E (WB and Pig). Genome Biol Evol 2013; 5:2498–2511 [View Article]
    [Google Scholar]
  9. Ankarklev J, Franzén O, Peirasmaki D, Jerlström-Hultqvist J, Lebbad M et al. Comparative genomic analyses of freshly isolated Giardia intestinalis assemblage A isolates. BMC Genomics 2015; 16:697 [View Article]
    [Google Scholar]
  10. Franzén O, Jerlström-Hultqvist J, Castro E, Sherwood E, Ankarklev J et al. Draft genome sequencing of Giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species?. PLoS Pathog 2009; 5:e1000560 [View Article]
    [Google Scholar]
  11. Jerlström-Hultqvist J, Franzén O, Ankarklev J, Xu F, Nohýnková E et al. Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate. BMC Genomics 2010; 11:543 [View Article]
    [Google Scholar]
  12. Kooyman FNJ, Wagenaar JA, Zomer A. Whole-genome sequencing of dog-specific assemblages C and D of Giardia duodenalis from single and pooled cysts indicates host-associated genes. Microb Genom 2019; 5:12 [View Article] [PubMed]
    [Google Scholar]
  13. Maloney JG, Molokin A, Solano-Aguilar G, Dubey JP, Santin M. A hybrid sequencing and assembly strategy for generating culture free Giardia genomes. Curr Res Microb Sci 2022; 3:100114 [View Article]
    [Google Scholar]
  14. Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD et al. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 2007; 317:1921–1926 [View Article]
    [Google Scholar]
  15. Pollo SMJ, Reiling SJ, Wit J, Workentine ML, Guy RA et al. Benchmarking hybrid assemblies of Giardia and prediction of widespread intra-isolate structural variation. Parasit Vectors 2020; 13:108 [View Article]
    [Google Scholar]
  16. Prystajecky N, Tsui CK-M, Hsiao WWL, Uyaguari-Diaz MI, Ho J et al. Giardia spp. are commonly found in mixed assemblages in surface water, as revealed by molecular and whole-genome characterization. Appl Environ Microbiol 2015; 81:4827–4834 [View Article]
    [Google Scholar]
  17. Radunovic M, Klotz C, Saghaug CS, Brattbakk H-R, Aebischer T et al. Genetic variation in potential Giardia vaccine candidates cyst wall protein 2 and α1-giardin. Parasitol Res 2017; 116:2151–2158 [View Article]
    [Google Scholar]
  18. Tsui C-M, Miller R, Uyaguari-Diaz M, Tang P, Chauve C et al. Beaver fever: whole-genome characterization of waterborne outbreak and sporadic isolates to study the zoonotic transmission of giardiasis. mSphere 2018; 3:00090–18 [View Article]
    [Google Scholar]
  19. Weisz F, Lalle M, Nohynkova E, Sannella AR, Dluhošová J et al. Testing the impact of whole genome amplification on genome comparison using the polyploid flagellated Giardia duodenalis as a model. Exp Parasitol 2019; 207:107776 [View Article]
    [Google Scholar]
  20. Wielinga C, Thompson RCA, Monis P, Ryan U. Identification of polymorphic genes for use in assemblage B genotyping assays through comparative genomics of multiple assemblage B Giardia duodenalis isolates. Mol Biochem Parasitol 2015; 201:1–4 [View Article]
    [Google Scholar]
  21. Xu F, Jex A, Svärd SG. A chromosome-scale reference genome for Giardia intestinalis WB. Sci Data 2020; 7:38 [View Article]
    [Google Scholar]
  22. Xu F, Jiménez-González A, Einarsson E, Ástvaldsson Á, Peirasmaki D et al. The compact genome of Giardia muris reveals important steps in the evolution of intestinal protozoan parasites. Microb Genom 2020; 6:mgen000402 [View Article]
    [Google Scholar]
  23. Tůmová P, Dluhošová J, Weisz F, Nohýnková E. Unequal distribution of genes and chromosomes refers to nuclear diversification in the binucleated Giardia intestinalis. Int J Parasitol 2019; 49:463–470 [View Article]
    [Google Scholar]
  24. National Center for Biotechnology Information (NCBI) Genome Information by Organism. n.d https://www.ncbi.nlm.nih.gov/genome/browse#!/eukaryotes/26/
  25. Helmy YA, Klotz C, Wilking H, Krücken J, Nöckler K et al. Epidemiology of Giardia duodenalis infection in ruminant livestock and children in the Ismailia province of Egypt: insights by genetic characterization. Parasit Vectors 2014; 7:321 [View Article]
    [Google Scholar]
  26. Ignatius R, Gahutu JB, Klotz C, Steininger C, Shyirambere C et al. High prevalence of Giardia duodenalis assemblage B infection and association with underweight in Rwandan children. PLoS Negl Trop Dis 2012; 6:e1677 [View Article]
    [Google Scholar]
  27. Sprong H, Cacciò SM, van der Giessen JWB. ZOOPNET network and partners Identification of zoonotic genotypes of Giardia duodenalis. PLoS Negl Trop Dis 2009; 3:e558 [View Article]
    [Google Scholar]
  28. Woschke A, Faber M, Stark K, Holtfreter M, Mockenhaupt F et al. Suitability of current typing procedures to identify epidemiologically linked human Giardia duodenalis isolates. PLoS Negl Trop Dis 2021; 15:e0009277 [View Article]
    [Google Scholar]
  29. Keister DB. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 1983; 77:487–488 [View Article]
    [Google Scholar]
  30. Hahn J, Seeber F, Kolodziej H, Ignatius R, Laue M et al. High sensitivity of Giardia duodenalis to tetrahydrolipstatin (orlistat) in vitro. PLoS One 2013; 8:e71597 [View Article]
    [Google Scholar]
  31. Saghaug CS, Klotz C, Kallio JP, Brattbakk H-R, Stokowy T et al. Genetic variation in metronidazole metabolism and oxidative stress pathways in clinical Giardia lamblia assemblage A and B isolates. Infect Drug Resist 2019; 12:1221–1235 [View Article]
    [Google Scholar]
  32. Sedinová J, Flegr J, Ey PL, Kulda J. Use of random amplified polymorphic DNA (RAPD) analysis for the identification of Giardia intestinalis subtypes and phylogenetic tree construction. J Eukaryot Microbiol 2003; 50:198–203 [View Article]
    [Google Scholar]
  33. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  34. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article]
    [Google Scholar]
  35. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 2017; 27:737–746 [View Article]
    [Google Scholar]
  36. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article]
    [Google Scholar]
  37. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  38. Kolmogorov M, Armstrong J, Raney BJ, Streeter I, Dunn M et al. Chromosome assembly of large and complex genomes using multiple references. Genome Res 2018; 28:1720–1732 [View Article]
    [Google Scholar]
  39. Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004; 14:1394–1403 [View Article]
    [Google Scholar]
  40. Smit A, Hubley R. RepeatModeler Open-1.0. 2008-2015. n.d http://www.repeatmasker.org
  41. Smit A, Hubley R, Green P. RepeatMasker Open-4.0. 2013-2015. n.d http://www.repeatmasker.org
  42. Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and Augustus. Bioinformatics 2016; 32:767–769 [View Article]
    [Google Scholar]
  43. Stanke M, Diekhans M, Baertsch R, Haussler D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 2008; 24:637–644 [View Article]
    [Google Scholar]
  44. Stanke M, Schöffmann O, Morgenstern B, Waack S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics 2006; 7:62 [View Article]
    [Google Scholar]
  45. Nachtweide S, Stanke M. Multi-genome annotation with Augustus. Methods Protoc 2019; 1962:139–160 [View Article]
    [Google Scholar]
  46. Paten B, Earl D, Nguyen N, Diekhans M, Zerbino D et al. Cactus: algorithms for genome multiple sequence alignment. Genome Res 2011; 21:1512–1528 [View Article]
    [Google Scholar]
  47. Yi H, Jin L. Co-phylog: an assembly-free phylogenomic approach for closely related organisms. Nucleic Acids Res 2013; 41:e75 [View Article]
    [Google Scholar]
  48. Törönen P, Medlar A, Holm L. PANNZER2: a rapid functional annotation web server. Nucleic Acids Res 2018; 46:W84–W88 [View Article]
    [Google Scholar]
  49. Wang Y, Tang H, Debarry JD, Tan X, Li J et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 2012; 40:e49 [View Article]
    [Google Scholar]
  50. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015; 12:59–60 [View Article]
    [Google Scholar]
  51. Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003; 13:2178–2189 [View Article]
    [Google Scholar]
  52. Lorenzi H, Khan A, Behnke MS, Namasivayam S, Swapna LS et al. Local admixture of amplified and diversified secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes. Nat Commun 2016; 7:10147 [View Article]
    [Google Scholar]
  53. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing; 2012 https://arxiv.org/abs/1207.3907v2
  54. Lalle M, Pozio E, Capelli G, Bruschi F, Crotti D et al. Genetic heterogeneity at the beta-giardin locus among human and animal isolates of Giardia duodenalis and identification of potentially zoonotic subgenotypes. Int J Parasitol 2005; 35:207–213 [View Article]
    [Google Scholar]
  55. Read CM, Monis PT, Thompson RCA. Discrimination of all genotypes of Giardia duodenalis at the glutamate dehydrogenase locus using PCR-RFLP. Infect Genet Evol 2004; 4:125–130 [View Article]
    [Google Scholar]
  56. Sulaiman IM, Fayer R, Bern C, Gilman RH, Trout JM et al. Triosephosphate isomerase gene characterization and potential zoonotic transmission of Giardia duodenalis. Emerg Infect Dis 2003; 9:1444–1452 [View Article]
    [Google Scholar]
  57. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019; 35:4453–4455 [View Article]
    [Google Scholar]
  58. Seabolt MH, Konstantinidis KT, Roellig DM. Hidden diversity within common protozoan parasites as revealed by a novel genomotyping scheme. Appl Environ Microbiol 2021; 87:e02275-20 [View Article]
    [Google Scholar]
  59. Saghaug CS, Gamlem AL, Hauge KB, Vahokoski J, Klotz C et al. Genetic diversity in the metronidazole metabolism genes nitroreductases and pyruvate ferredoxin oxidoreductases in susceptible and refractory clinical samples of Giardia lamblia. Int J Parasitol Drugs Drug Resist 2022; 21:51–60 [View Article]
    [Google Scholar]
  60. Dodsworth S, Chase MW, Kelly LJ, Leitch IJ, Macas J et al. Genomic repeat abundances contain phylogenetic signal. Syst Biol 2015; 64:112–126 [View Article]
    [Google Scholar]
  61. Drillon G, Champeimont R, Oteri F, Fischer G, Carbone A. Phylogenetic reconstruction based on synteny block and gene adjacencies. Mol Biol Evol 2020; 37:2747–2762 [View Article]
    [Google Scholar]
  62. De Queiroz K. Species concepts and species delimitation. Syst Biol 2007; 56:879–886 [View Article]
    [Google Scholar]
  63. Zachos FE. (New) species concepts, species delimitation and the inherent limitations of taxonomy. J Genet 2018; 97:811–815 [View Article]
    [Google Scholar]
  64. Zallot R, Harrison KJ, Kolaczkowski B, de Crécy-Lagard V. Functional annotations of paralogs: a blessing and a curse. Life 2016; 6:39 [View Article]
    [Google Scholar]
  65. Bénéré E, VAN Assche T, Cos P, Maes L. Variation in growth and drug susceptibility among Giardia duodenalis assemblages A, B and E in axenic in vitro culture and in the gerbil model. Parasitology 2011; 138:1354–1361 [View Article]
    [Google Scholar]
  66. Rice EW, Schaefer FW. Improved in vitro excystation procedure for Giardia lamblia cysts. J Clin Microbiol 1981; 14:709–710 [View Article]
    [Google Scholar]
  67. Wallis PM, Wallis HM. Excystation and culturing of human and animal Giardia spp. by using gerbils and TYI-S-33 medium. Appl Environ Microbiol 1986; 51:647–651 [View Article]
    [Google Scholar]
  68. Manning G, Reiner DS, Lauwaet T, Dacre M, Smith A et al. The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology. Genome Biol 2011; 12:R66 [View Article]
    [Google Scholar]
  69. Birky CW. Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. Genetics 1996; 144:427–437 [View Article]
    [Google Scholar]
  70. Birky CW. Giardia sex? Yes, but how and how much?. Trends Parasitol 2010; 26:70–74 [View Article]
    [Google Scholar]
  71. Hennessey KM, Alas GCM, Rogiers I, Li R, Merritt EA et al. Nek8445, a protein kinase required for microtubule regulation and cytokinesis in Giardia lamblia. Mol Biol Cell 2020; 31:1611–1622 [View Article]
    [Google Scholar]
  72. Nash TE. Antigenic Variation in Giardia. In Luján HD, Svärd S. eds Giardia: A Model Organism Wien ; New York: Springer; 2011 pp 245–257
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000963
Loading
/content/journal/mgen/10.1099/mgen.0.000963
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error