1887

Abstract

Among Shiga toxin (Stx)-producing (STEC) strains of various serotypes, O157:H7 and five major non-O157 STEC (O26:H11, O111:H8, O103:H2, O121:H19 and O145:H28) can be selectively isolated by using tellurite-containing media. While human infections by O165:H25 STEC strains have been reported worldwide, their detection and isolation are not easy, as they are not resistant to tellurite. Systematic whole-genome sequencing (WGS) analyses have not yet been conducted. Here, we defined O165:H25 strains and their close relatives, including O172:H25 strains, as clonal complex 119 (CC119) and performed a global WGS analysis of the major lineage of CC119, called CC119 (CC119ss), by using 202 CC119ss strains, including 90 strains sequenced in this study. Detailed comparisons of 13 closed genomes, including 7 obtained in this study, and systematic analyses of Stx phage genomes in 50 strains covering the entire CC119ss lineage, were also conducted. These analyses revealed that the Stx2a phage, the locus of enterocyte effacement (LEE) encoding a type III secretion system (T3SS), many prophages encoding T3SS effectors, and the virulence plasmid were acquired by the common ancestor of CC119ss and have been stably maintained in this lineage, while unusual exchanges of Stx1a and Stx2c phages were found at a single integration site. Although the genome sequences of Stx2a phages were highly conserved, CC119ss strains exhibited notable variation in Stx2 production levels. Further analyses revealed the lack of SpLE1-like elements carrying the tellurite resistance genes in CC119ss and defects in rhamnose, sucrose, salicin and dulcitol fermentation. The genetic backgrounds underlying these defects were also clarified.

Funding
This study was supported by the:
  • Japan Society for the Promotion of Science (Award 21K07006)
    • Principle Award Recipient: KeijiNakamura
  • Japan Agency for Medical Research and Development (Award 22fk0108611h050)
    • Principle Award Recipient: TetsuyaHayashi
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000959
2023-03-23
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/3/mgen000959.html?itemId=/content/journal/mgen/10.1099/mgen.0.000959&mimeType=html&fmt=ahah

References

  1. Scheutz F, Teel LD, Beutin L, Piérard D, Buvens G et al. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J Clin Microbiol 2012; 50:2951–2963 [View Article] [PubMed]
    [Google Scholar]
  2. Deng W, Puente JL, Gruenheid S, Li Y, Vallance BA et al. Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci 2004; 101:3597–3602 [View Article]
    [Google Scholar]
  3. Tobe T, Beatson SA, Taniguchi H, Abe H, Bailey CM et al. An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci 2006; 103:14941–14946 [View Article]
    [Google Scholar]
  4. Ogura Y, Ooka T, Iguchi A, Toh H, Asadulghani M et al. Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. Proc Natl Acad Sci 2009; 106:17939–17944 [View Article]
    [Google Scholar]
  5. Eppinger M, Mammel MK, Leclerc JE, Ravel J, Cebula TA. Genomic anatomy of Escherichia coli O157:H7 outbreaks. Proc Natl Acad Sci 2011; 108:20142–20147 [View Article]
    [Google Scholar]
  6. Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bover‐Cid S, Chemaly M et al. Pathogenicity assessment of Shiga toxin‐producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA J 2020; 18:5967 [View Article]
    [Google Scholar]
  7. Centers for Disease Control and Prevention National Shiga toxin-producing Escherichia coli (STEC) surveillance annual report, 2017. CDC; 2021
  8. Nakamura K, Murase K, Sato MP, Toyoda A, Itoh T et al. Differential dynamics and impacts of prophages and plasmids on the pangenome and virulence factor repertoires of Shiga toxin-producing Escherichia coli O145:H28. Microb Genom 2020; 6:e000323 [View Article]
    [Google Scholar]
  9. Nishida R, Nakamura K, Taniguchi I, Murase K, Ooka T et al. The global population structure and evolutionary history of the acquisition of major virulence factor-encoding genetic elements in Shiga toxin-producing Escherichia coli O121:H19. Microb Genom 2021; 7:000716 [View Article]
    [Google Scholar]
  10. Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K et al. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 2001; 8:11–22 [View Article] [PubMed]
    [Google Scholar]
  11. Kusumoto M, Ooka T, Nishiya Y, Ogura Y, Saito T et al. Insertion sequence-excision enhancer removes transposable elements from bacterial genomes and induces various genomic deletions. Nat Commun 2011; 2:152 [View Article]
    [Google Scholar]
  12. Taylor DE, Rooker M, Keelan M, Ng L-K, Martin I et al. Genomic variability of O islands encoding tellurite resistance in enterohemorrhagic Escherichia coli O157:H7 isolates. J Bacteriol 2002; 184:4690–4698 [View Article] [PubMed]
    [Google Scholar]
  13. Zadik PM, Chapman PA, Siddons CA. Use of tellurite for the selection of verocytotoxigenic Escherichia coli O157. J Med Microbiol 1993; 39:155–158 [View Article] [PubMed]
    [Google Scholar]
  14. Kerangart S, Douëllou T, Delannoy S, Fach P, Beutin L et al. Variable tellurite resistance profiles of clinically-relevant Shiga toxin-producing Escherichia coli (STEC) influence their recovery from foodstuffs. Food Microbiol 2016; 59:32–42 [View Article] [PubMed]
    [Google Scholar]
  15. Bielaszewska M, Stoewe F, Fruth A, Zhang W, Prager R et al. Shiga toxin, cytolethal distending toxin, and hemolysin repertoires in clinical Escherichia coli O91 isolates. J Clin Microbiol 2009; 47:2061–2066 [View Article] [PubMed]
    [Google Scholar]
  16. Feng PCH, Delannoy S, Lacher DW, Dos Santos LF, Beutin L et al. Genetic diversity and virulence potential of shiga toxin-producing Escherichia coli O113:H21 strains isolated from clinical, environmental, and food sources. Appl Environ Microbiol 2014; 80:4757–4763 [View Article] [PubMed]
    [Google Scholar]
  17. Feng PCH, Delannoy S, Lacher DW, Bosilevac JM, Fach P et al. Shiga toxin-producing serogroup O91 Escherichia coli strains isolated from food and environmental samples. Appl Environ Microbiol 2017; 83:e01231-17 [View Article]
    [Google Scholar]
  18. Seto K, Taguchi M, Kobayashi K, Kozaki S. Biochemical and molecular characterization of minor serogroups of Shiga toxin-producing Escherichia coli isolated from humans in Osaka prefecture. J Vet Med Sci 2007; 69:1215–1222 [View Article] [PubMed]
    [Google Scholar]
  19. Keskimäki M, Saari M, Heiskanen T, Siitonen A. Shiga toxin-producing Escherichia coli in finland from 1990 through 1997: prevalence and characteristics of isolates. J Clin Microbiol 1998; 36:3641–3646 [View Article] [PubMed]
    [Google Scholar]
  20. Boerlin P, McEwen SA, Boerlin-Petzold F, Wilson JB, Johnson RP et al. Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J Clin Microbiol 1999; 37:497–503 [View Article] [PubMed]
    [Google Scholar]
  21. Friedrich AW, Bielaszewska M, Zhang W-L, Pulz M, Kuczius T et al. Escherichia coli harboring Shiga toxin 2 gene variants: frequency and association with clinical symptoms. J Infect Dis 2002; 185:74–84 [View Article] [PubMed]
    [Google Scholar]
  22. Jelacic JK, Damrow T, Chen GS, Jelacic S, Bielaszewska M et al. Shiga toxin-producing Escherichia coli in Montana: bacterial genotypes and clinical profiles. J Infect Dis 2003; 188:719–729 [View Article] [PubMed]
    [Google Scholar]
  23. Ethelberg S, Olsen KEP, Scheutz F, Jensen C, Schiellerup P et al. Virulence factors for hemolytic uremic syndrome, Denmark. Emerg Infect Dis 2004; 10:842–847 [View Article]
    [Google Scholar]
  24. Brooks JT, Sowers EG, Wells JG, Greene KD, Griffin PM et al. Non-O157 Shiga toxin-producing Escherichia coli infections in the United States, 1983-2002. J Infect Dis 2005; 192:1422–1429 [View Article] [PubMed]
    [Google Scholar]
  25. Johnson KE, Thorpe CM, Sears CL. The emerging clinical importance of non-O157 Shiga toxin-producing Escherichia coli. Clin Infect Dis 2006; 43:1587–1595 [View Article] [PubMed]
    [Google Scholar]
  26. de Souza RL, Abreu Carvalhaes JT, Sanae Nishimura L, de Andrade MC, Cabilio Guth BE. Hemolytic uremic syndrome in pediatric intensive care units in são paulo, Brazil. Open Microbiol J 2011; 5:76–82 [View Article]
    [Google Scholar]
  27. Konno T, Yatsuyanagi J, Takahashi S, Kumagai Y, Wada E et al. Determination of enterohemorrhagic Escherichia coli serotype O165:HNM infection in a hemolytic uremic syndrome patient with adenovirus seroype 41. Jpn J Infect Dis 2013; 66:394–397 [View Article]
    [Google Scholar]
  28. Bielaszewska M, Prager R, Vandivinit L, Müsken A, Mellmann A et al. Detection and characterization of the fimbrial sfp cluster in enterohemorrhagic Escherichia coli O165:H25/NM isolates from humans and cattle. Appl Environ Microbiol 2009; 75:64–71 [View Article] [PubMed]
    [Google Scholar]
  29. Inouye M, Dashnow H, Raven L-A, Schultz MB, Pope BJ et al. SRST2: Rapid genomic surveillance for public health and hospital microbiology labs. Genome Med 2014; 6:90 [View Article] [PubMed]
    [Google Scholar]
  30. Wirth T, Falush D, Lan R, Colles F, Mensa P et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 2006; 60:1136–1151 [View Article] [PubMed]
    [Google Scholar]
  31. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  32. Bessonov K, Laing C, Robertson J, Yong I, Ziebell K et al. ECTyper: in silico Escherichia coli serotype and species prediction from raw and assembled whole-genome sequence data. Microb Genom 2021; 7:000728 [View Article]
    [Google Scholar]
  33. Kajitani R, Yoshimura D, Ogura Y, Gotoh Y, Hayashi T et al. Platanus_B: an accurate de novo assembler for bacterial genomes using an iterative error-removal process. DNA Res 2020; 27:1–12 [View Article] [PubMed]
    [Google Scholar]
  34. Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genom 2017; 3:e000132 [View Article]
    [Google Scholar]
  35. De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 2018; 34:2666–2669 [View Article] [PubMed]
    [Google Scholar]
  36. Wick RR, Judd LM, Gorrie CL, Holt KE, Phillippy AM. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article]
    [Google Scholar]
  37. Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 2018; 34:1037–1039 [View Article]
    [Google Scholar]
  38. Ohtsubo Y, Ikeda-Ohtsubo W, Nagata Y, Tsuda M. GenomeMatcher: a graphical user interface for DNA sequence comparison. BMC Bioinformatics 2008; 9:1–9 [View Article]
    [Google Scholar]
  39. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  40. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom 2016; 2:e000056 [View Article]
    [Google Scholar]
  41. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article] [PubMed]
    [Google Scholar]
  42. Waters NR, Abram F, Brennan F, Holmes A, Pritchard L. Easy phylotyping of Escherichia coli via the EzClermont web app and command-line tool. Access Microbiol 2020; 2:acmi000143 [View Article]
    [Google Scholar]
  43. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004; 5:R12 [View Article]
    [Google Scholar]
  44. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [View Article]
    [Google Scholar]
  45. Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. Fast hierarchical Bayesian analysis of population structure. Nucleic Acids Res 2019; 47:5539–5549 [View Article] [PubMed]
    [Google Scholar]
  46. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article]
    [Google Scholar]
  47. Nakamura K, Ogura Y, Gotoh Y, Hayashi T. Prophages integrating into prophages: a mechanism to accumulate type III secretion effector genes and duplicate Shiga toxin-encoding prophages in Escherichia coli. PLoS Pathog 2021; 17:e1009073 [View Article]
    [Google Scholar]
  48. Ooka T, Seto K, Kawano K, Kobayashi H, Etoh Y et al. Clinical significance of Escherichia albertii. Emerg Infect Dis 2012; 18:488–492 [View Article]
    [Google Scholar]
  49. Robertson J, Nash JHE. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb Genom 2018; 4:e000206 [View Article]
    [Google Scholar]
  50. Ooka T, Ogura Y, Katsura K, Seto K, Kobayashi H et al. Defining the genome features of Escherichia albertii, an emerging enteropathogen closely related to Escherichia coli. Genome Biol Evol 2015; 7:3170–3179 [View Article]
    [Google Scholar]
  51. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28:3150–3152 [View Article] [PubMed]
    [Google Scholar]
  52. Ogura Y, Ooka T, Asadulghani M, Terajima J, Nougayrède J-P et al. Extensive genomic diversity and selective conservation of virulence-determinants in enterohemorrhagic Escherichia coli strains of O157 and non-O157 serotypes. Genome Biol 2007; 8:1 [View Article]
    [Google Scholar]
  53. Nakamura K, Tokuda C, Arimitsu H, Etoh Y, Hamasaki M et al. Development of a Homogeneous Time-Resolved FRET (HTRF) assay for the quantification of Shiga toxin 2 produced by E. coli. PeerJ 2021; 9:e11871 [View Article]
    [Google Scholar]
  54. Fisher RA. The logic of inductive inference. J R Stat Soc 1935; 98:39 [View Article]
    [Google Scholar]
  55. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 1995; 57:289–300 [View Article]
    [Google Scholar]
  56. Geue L, Selhorst T, Schnick C, Mintel B, Conraths FJ. Analysis of the clonal relationship of shiga toxin-producing Escherichia coli serogroup O165:H25 isolated from cattle. Appl Environ Microbiol 2006; 72:2254–2259 [View Article] [PubMed]
    [Google Scholar]
  57. Kim J, Nietfeldt J, Benson AK. Octamer-based genome scanning distinguishes a unique subpopulation of Escherichia coli O157:H7 strains in cattle. Proc Natl Acad Sci 1999; 96:13288–13293 [View Article]
    [Google Scholar]
  58. Dallman TJ, Ashton PM, Byrne L, Perry NT, Petrovska L et al. Applying phylogenomics to understand the emergence of Shiga-toxin-producing Escherichia coli O157:H7 strains causing severe human disease in the UK. Microb Genom 2015; 1:e000029 [View Article]
    [Google Scholar]
  59. Lindsey RL, Knipe K, Rowe L, Garcia-Toledo L, Loparev V et al. Complete genome sequences of two Shiga toxin-producing Escherichia coli strains from serotypes O119:H4 and O165:H25. Genome Announc 2015; 3:e01496-15 [View Article]
    [Google Scholar]
  60. Patel PN, Lindsey RL, Garcia-Toledo L, Rowe LA, Batra D et al. High-quality whole-genome sequences for 77 Shiga toxin-producing Escherichia coli strains generated with PacBio sequencing. Genome Announc 2018; 6:e00391-18 [View Article]
    [Google Scholar]
  61. Stroeher UH, Jedani KE, Manning PA. Genetic organization of the regions associated with surface polysaccharide synthesis in Vibrio cholerae O1, O139 and Vibrio anguillarum O1 and O2: a review. Gene 1998; 223:269–282 [View Article]
    [Google Scholar]
  62. Wang L, Huskic S, Cisterne A, Rothemund D, Reeves PR. The O-antigen gene cluster of Escherichia coli O55:H7 and identification of a new UDP-GlcNAc C4 epimerase gene. J Bacteriol 2002; 184:2620–2625 [View Article] [PubMed]
    [Google Scholar]
  63. Iguchi A, Ooka T, Ogura Y, Asadulghani M, Nakayama K et al. Genomic comparison of the O-antigen biosynthesis gene clusters of Escherichia coli O55 strains belonging to three distinct lineages. Microbiology (Reading) 2008; 154:559–570 [View Article]
    [Google Scholar]
  64. Makino K, Ishii K, Yasunaga T, Hattori M, Yokoyama K et al. Complete nucleotide sequences of 93-kb and 3.3-kb plasmids of an enterohemorrhagic Escherichia coli O157:H7 derived from Sakai outbreak. DNA Res 1998; 5:1–9 [View Article] [PubMed]
    [Google Scholar]
  65. Ogura Y, Gotoh Y, Itoh T, Sato MP, Seto K et al. Population structure of Escherichia coli O26: H11 with recent and repeated stx2 acquisition in multiple lineages. Microb Genom 2017; 3:e000141 [View Article]
    [Google Scholar]
  66. Brunder W, Khan AS, Hacker J, Karch H. Novel type of fimbriae encoded by the large plasmid of sorbitol-fermenting enterohemorrhagic Escherichia coli O157:H(-). Infect Immun 2001; 69:4447–4457 [View Article]
    [Google Scholar]
  67. Harshey RM. Transposable phage Mu. Microbiol Spectr 2014; 2:2 [View Article]
    [Google Scholar]
  68. Asadulghani M, Ogura Y, Ooka T, Itoh T, Sawaguchi A et al. The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog 2009; 5:e1000408 [View Article]
    [Google Scholar]
  69. Plunkett G, Rose DJ, Durfee TJ, Blattner FR. Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J Bacteriol 1999; 181:1767–1778 [View Article] [PubMed]
    [Google Scholar]
  70. de Sablet T, Bertin Y, Vareille M, Girardeau J-P, Garrivier A et al. Differential expression of stx2 variants in Shiga toxin-producing Escherichia coli belonging to seropathotypes A and C. Microbiology 2008; 154:176–186 [View Article]
    [Google Scholar]
  71. Ogura Y, Mondal SI, Islam MR, Mako T, Arisawa K et al. The Shiga toxin 2 production level in enterohemorrhagic Escherichia coli O157:H7 is correlated with the subtypes of toxin-encoding phage. Sci Rep 2015; 5:16663 [View Article] [PubMed]
    [Google Scholar]
  72. Wagner PL, Neely MN, Zhang X, Acheson DW, Waldor MK et al. Role for a phage promoter in Shiga toxin 2 expression from a pathogenic Escherichia coli strain. J Bacteriol 2001; 183:2081–2085 [View Article] [PubMed]
    [Google Scholar]
  73. Tyler JS, Mills MJ, Friedman DI. The operator and early promoter region of the Shiga toxin type 2-encoding bacteriophage 933W and control of toxin expression. J Bacteriol 2004; 186:7670–7679 [View Article] [PubMed]
    [Google Scholar]
  74. Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA. Manual of Clinical Microbiology, 9th. edn ASM Press; 2007
    [Google Scholar]
  75. Moralejo P, Egan SM, Hidalgo E, Aguilar J. Sequencing and characterization of a gene cluster encoding the enzymes for L-rhamnose metabolism in Escherichia coli. J Bacteriol 1993; 175:5585–5594 [View Article] [PubMed]
    [Google Scholar]
  76. Ryu K-S, Kim J-I, Cho S-J, Park D, Park C et al. Structural insights into the monosaccharide specificity of Escherichia coli rhamnose mutarotase. J Mol Biol 2005; 349:153–162 [View Article] [PubMed]
    [Google Scholar]
  77. Jahreis K, Bentler L, Bockmann J, Hans S, Meyer A et al. Adaptation of sucrose metabolism in the Escherichia coli wild-type strain EC3132. J Bacteriol 2002; 184:5307–5316 [View Article] [PubMed]
    [Google Scholar]
  78. Iguchi A, Thomson NR, Ogura Y, Saunders D, Ooka T et al. Complete genome sequence and comparative genome analysis of enteropathogenic Escherichia coli O127:H6 strain E2348/69. J Bacteriol 2009; 191:347–354 [View Article] [PubMed]
    [Google Scholar]
  79. Schnetz K, Toloczyki C, Rak B. Beta-glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. J Bacteriol 1987; 169:2579–2590 [View Article] [PubMed]
    [Google Scholar]
  80. Nobelmann B, Lengeler JW. Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism. J Bacteriol 1996; 178:6790–6795 [View Article] [PubMed]
    [Google Scholar]
  81. Hiramatsu R, Matsumoto M, Miwa Y, Suzuki Y, Saito M et al. Characterization of Shiga toxin-producing Escherichia coli O26 strains and establishment of selective isolation media for these strains. J Clin Microbiol 2002; 40:922–925 [View Article] [PubMed]
    [Google Scholar]
  82. Egan SM, Schleif RF. A regulatory cascade in the induction of rhaBAD. J Mol Biol 1993; 234:87–98 [View Article] [PubMed]
    [Google Scholar]
  83. Vía P, Badía J, Baldomà L, Obradors N, Aguilar J. Transcriptional regulation of the Escherichia coli rhaT gene. Microbiology 1996; 142:1833–1840 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000959
Loading
/content/journal/mgen/10.1099/mgen.0.000959
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error