1887

Abstract

Ticks harbour a high diversity of viruses, bacteria and protozoa. The soft tick (Argasidae) is a common ectoparasite of bats in the Palearctic region and is suspected to be vector and reservoir of viruses and other microbial species in bat populations, some of which may act as zoonotic agents for human disease. The Soprano pipistrelle (, Vespertilionidae) is widely distributed in Europe, where it can be found inside or close to human habitation. We used meta-transcriptomic sequencing to determine the RNA virome and common microbiota in blood-fed ticks collected from a Soprano pipistrelle bat roosting site in south-central Sweden. Our analyses identified 16 viruses from 11 virus families, of which 15 viruses were novel. For the first time in Sweden we identified Issuk-Kul virus, a zoonotic arthropod-borne virus previously associated with outbreaks of acute febrile illness in humans. Probable bat-associated and tick-borne viruses were classified within the families and , while other invertebrate-associated viruses included members of the , , , , and . Similarly, we found abundant bacteria in including genera with known tick-borne bacteria, such as spp. and spp. These findings demonstrate the remarkable diversity of RNA viruses and bacteria present in and highlight the importance of bat-associated ectoparasite surveillance as an effective and non-invasive means to track viruses and bacteria circulating in bats and ticks.

Funding
This study was supported by the:
  • Forskningsrådet i Sydöstra Sverige (Award FORSS, 931010)
    • Principle Award Recipient: PeterWilhelmsson
  • Innovation and Technology Commission (Award AIR@InnoHK)
    • Principle Award Recipient: EdwardC Holmes
  • Australian Research Council (Award FL170100022)
    • Principle Award Recipient: EdwardC Holmes
  • Vetenskapsrådet (Award 2020-02593)
    • Principle Award Recipient: JohnPettersson
  • Svenska Forskningsrådet Formas (Award 2015-710)
    • Principle Award Recipient: JohnPettersson
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000942
2023-03-02
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/3/mgen000942.html?itemId=/content/journal/mgen/10.1099/mgen.0.000942&mimeType=html&fmt=ahah

References

  1. Mans BJ, Kelava S, Pienaar R, Featherston J, de MH et al. Nuclear (18S-28S rrna) and mitochondrial genome markers of carios (carios) vespertilionis (argasidae) support carios latreille, 1796 as a lineage embedded in the ornithodorinae: re-classification of the carios sensu klompen and oliver. Ticks Tick Borne Dis 1993; 2021:101688
    [Google Scholar]
  2. Petney TN, Jaenson TGT, Faffle MP. Argas vespertilionis (Latreille, 1796). In Ticks of Europe and North Africa. In: Ticks of Europe and North Africa Springer International Publishing; 2017 pp 33–40
    [Google Scholar]
  3. Sándor AD, Mihalca AD, Domşa C, Péter Á, Hornok S. Argasid Ticks of Palearctic Bats: Distribution, Host Selection, and Zoonotic Importance. Front Vet Sci 2021; 8:684737 [View Article] [PubMed]
    [Google Scholar]
  4. Sándor AD, Corduneanu A, Péter Á, Mihalca AD, Barti L et al. Bats and ticks: host selection and seasonality of bat-specialist ticks in eastern Europe. Parasit Vectors 2019; 12:605 [View Article] [PubMed]
    [Google Scholar]
  5. Jaenson TGT, Wilhelmsson P. First Record of a Suspected Human-Pathogenic Borrelia Species in Populations of the Bat Tick Carios vespertilionis in Sweden. Microorganisms 2021; 9:1100 [View Article] [PubMed]
    [Google Scholar]
  6. Hoogstraal H. Argasid and nuttalliellid ticks as parasites and vectors. Adv Parasitol 1985; 24:135–238 [View Article] [PubMed]
    [Google Scholar]
  7. Davidson‐Watts I, Jones G. Differences in foraging behaviour between Pipistrellus pipistrellus (Schreber, 1774) and Pipistrellus pygmaeus (Leach, 1825). Journal of Zoology 2006; 268:55–62 [View Article]
    [Google Scholar]
  8. Stone E, Zeale MRK, Newson SE, Browne WJ, Harris S et al. Managing Conflict between Bats and Humans: The Response of Soprano Pipistrelles (Pipistrellus pygmaeus) to Exclusion from Roosts in Houses. PLoS One 2015; 10:e0131825 [View Article] [PubMed]
    [Google Scholar]
  9. Lv J, Fernández de Marco MDM, Goharriz H, Phipps LP, McElhinney LM et al. Detection of tick-borne bacteria and babesia with zoonotic potential in Argas (Carios) vespertilionis (Latreille, 1802) ticks from British bats. Sci Rep 2018; 8:1865 [View Article] [PubMed]
    [Google Scholar]
  10. Jaenson TGT, Tälleklint L, Lundqvist L, Olsen B, Chirico J et al. Geographical distribution, host associations, and vector roles of ticks (Acari: Ixodidae, Argasidae) in Sweden. J Med Entomol 1994; 31:240–256 [View Article] [PubMed]
    [Google Scholar]
  11. Zabashta MV, Orlova MV, Pichurina NL, Khametova AP, Romanova LV et al. Participation of Bats (Chiroptera, Mammalia) and Their Ectoparasites in Circulation of Pathogens of Natural Focal Infections in the South of Russia. Entmol Rev 2019; 99:513–521 [View Article]
    [Google Scholar]
  12. Hubbard MJ, Baker AS, Cann KJ. Distribution of Borrelia burgdorferi s.l. spirochaete DNA in British ticks (Argasidae and Ixodidae) since the 19th century, assessed by PCR. Med Vet Entomol 1998; 12:89–97 [View Article] [PubMed]
    [Google Scholar]
  13. Alkhovsky SV, Lvov DK, Shchelkanov MY, Shchetinin AM, Deryabin PG et al. The taxonomy of the issyk-kul virus (ISKV, bunyaviridae, nairovirus), the etiologic agent of the issyk-kul fever isolated from bats (vespertilionidae) and ticks argas (carios) vespertilionis (latreille, 1796). Vopr Virusol 2013;58:11–5 2013; 58:11–15
    [Google Scholar]
  14. Oba M, Omatsu T, Takano A, Fujita H, Sato K et al. A novel Bunyavirus from the soft tick, Argas vespertilionis, in Japan. J Vet Med Sci 2016; 78:443–445 [View Article] [PubMed]
    [Google Scholar]
  15. Obsomer V, Wirtgen M, Linden A, Claerebout E, Heyman P et al. Spatial disaggregation of tick occurrence and ecology at a local scale as a preliminary step for spatial surveillance of tick-borne diseases: general framework and health implications in Belgium. Parasit Vectors 2013; 6:190 [View Article] [PubMed]
    [Google Scholar]
  16. Zhou S, Liu B, Han Y, Wang Y, Chen L et al. ZOVER: the database of zoonotic and vector-borne viruses. Nucleic Acids Res 2022; 50:D943–D949 [View Article] [PubMed]
    [Google Scholar]
  17. Chen L, Liu B, Yang J, Jin Q. DBatVir: the database of bat-associated viruses. Database (Oxford) 2014; 2014:bau021 [View Article] [PubMed]
    [Google Scholar]
  18. Shi M, Zhang YZ, Holmes EC. Meta-transcriptomics and the evolutionary biology of RNA viruses. Virus Res 2018; 243:83–90 [View Article] [PubMed]
    [Google Scholar]
  19. Shi M, Lin X-D, Tian J-H, Chen L-J, Chen X et al. Redefining the invertebrate RNA virosphere. Nature 2016; 540:539–543 [View Article] [PubMed]
    [Google Scholar]
  20. Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet 2019; 20:631–656 [View Article] [PubMed]
    [Google Scholar]
  21. Ortiz-Baez AS, Cousins K, Eden J-S, Chang W-S, Harvey E et al. Meta-transcriptomic identification of Trypanosoma spp. in native wildlife species from Australia. Parasit Vectors 2020; 13:447 [View Article] [PubMed]
    [Google Scholar]
  22. Li C-X, Shi M, Tian J-H, Lin X-D, Kang Y-J et al. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. Elife 2015; 4:e05378 [View Article] [PubMed]
    [Google Scholar]
  23. Zhang YZ, Wu WC, Shi M, Holmes EC. The diversity, evolution and origins of vertebrate RNA viruses. Curr Opin Virol 2018; 31:9–16 [View Article] [PubMed]
    [Google Scholar]
  24. Tuttle MD, Kiser M, Kiser S. The bat house builder’s handbook University of Texas Press; 2013
    [Google Scholar]
  25. Hoogstraal H. Bat ticks of the genus argas (ixodoidea, argasidae). the subgenus carios, A redescription of A. (C.) vespertilionis (latreille, 1802), and variation within an egyptian population. Ann Entomol Soc Am 1958; 51:19–26
    [Google Scholar]
  26. Arthur DR. British ticks London: Butterworths; 1963 p 213
    [Google Scholar]
  27. Hillyard PD. Ticks of north-west Europe Field Studies Council; 1996
    [Google Scholar]
  28. Yamaguti N, Tipton VJ, Keegan HL, Toshioka S. Ticks of Japan, Korea, and the Ryukyu islands. Brigham Young Univ Sci Bull Biol Ser 1971; 15:1
    [Google Scholar]
  29. Filippova NA. Argasid ticks (argasidae). Fauna SSSR 1966; 4:255
    [Google Scholar]
  30. Andrews S. FastQC: a quality control tool for high throughput sequence data; 2010
  31. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016; 32:3047–3048 [View Article] [PubMed]
    [Google Scholar]
  32. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015; 31:1674–1676 [View Article] [PubMed]
    [Google Scholar]
  33. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015; 12:59–60 [View Article] [PubMed]
    [Google Scholar]
  34. Marcelino VR, Clausen PTLC, Buchmann JP, Wille M, Iredell JR et al. CCMetagen: comprehensive and accurate identification of eukaryotes and prokaryotes in metagenomic data. Genome Biol 2020; 21:103 [View Article] [PubMed]
    [Google Scholar]
  35. Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011; 39:W29–37 [View Article] [PubMed]
    [Google Scholar]
  36. Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 2012; 28:3211–3217 [View Article] [PubMed]
    [Google Scholar]
  37. Schäffer AA, McVeigh R, Robbertse B, Schoch CL, Johnston A et al. Ribovore: ribosomal RNA sequence analysis for GenBank submissions and database curation. BMC Bioinformatics 2021; 22:400 [View Article] [PubMed]
    [Google Scholar]
  38. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  39. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  40. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol Biol Evol 2018; 35:518–522 [View Article] [PubMed]
    [Google Scholar]
  41. Wickham H. ggplot2. In Ggplot2: Elegant Graphics for Data Analysis Cham: Springer-Verlag New York; 2016 [View Article]
    [Google Scholar]
  42. Allan BF, Goessling LS, Storch GA, Thach RE. Blood meal analysis to identify reservoir hosts for Amblyomma americanum ticks. Emerg Infect Dis 2010; 16:433–440 [View Article] [PubMed]
    [Google Scholar]
  43. Letko M, Seifert SN, Olival KJ, Plowright RK, Munster VJ. Bat-borne virus diversity, spillover and emergence. Nat Rev Microbiol 2020; 18:461–471 [View Article] [PubMed]
    [Google Scholar]
  44. Xu Z, Feng Y, Chen X, Shi M, Fu S et al. Virome of Bat-Infesting Arthropods: Highly Divergent Viruses in Different Vectors. J Virol 2022; 96:e0146421 [View Article] [PubMed]
    [Google Scholar]
  45. Blomström A-L, Luz HR, Öhlund P, Lukenge M, Brandão PE et al. Novel Viruses Found in Antricola Ticks Collected in Bat Caves in the Western Amazonia of Brazil. Viruses 2019; 12:48 [View Article] [PubMed]
    [Google Scholar]
  46. Wille M, Harvey E, Shi M, Gonzalez-Acuña D, Holmes EC et al. Sustained RNA virome diversity in Antarctic penguins and their ticks. ISME J 2020; 14:1768–1782 [View Article] [PubMed]
    [Google Scholar]
  47. Liu Z, Li L, Xu W, Yuan Y, Liang X et al. Extensive diversity of RNA viruses in ticks revealed by metagenomics in northeastern china. bioRxiv 2022; 2022:04.27.489762
    [Google Scholar]
  48. Atkinson B, Marston DA, Ellis RJ, Fooks AR, Hewson R. Complete Genomic Sequence of Issyk-Kul Virus. Genome Announc 2015; 3:662–677 [View Article]
    [Google Scholar]
  49. Lvov DK, Karas FR, Timofeev EM, Tsyrkin YM, Vargina SG. Issyk-kul” virus, a new arbovirus isolated from bats and argas (carios) vespertilionis (latr., 1802) in the kirghiz S.S.R. arch füR die gesamte virusforsch; 1973 422. 1973;42:207–9
  50. Brinkmann A, Kohl C, Radonić A, Dabrowski PW, Mühldorfer K et al. First detection of bat-borne Issyk-Kul virus in Europe. Sci Rep 2020; 10:1–7 [View Article]
    [Google Scholar]
  51. Kohl C, Brinkmann A, Radonić A, Dabrowski PW, Mühldorfer K et al. The virome of German bats: comparing virus discovery approaches. Sci Rep 2021; 11:7430 [View Article] [PubMed]
    [Google Scholar]
  52. Walker PJ, Widen SG, Firth C, Blasdell KR, Wood TG et al. Genomic Characterization of Yogue, Kasokero, Issyk-Kul, Keterah, Gossas, and Thiafora Viruses: Nairoviruses Naturally Infecting Bats, Shrews, and Ticks. Am J Trop Med Hyg 2015; 93:1041–1051 [View Article] [PubMed]
    [Google Scholar]
  53. Lvov DK. Issyk-Kul Fever Arboviruses Epidemiol Ecol; 2019 pp 53–62 [View Article]
    [Google Scholar]
  54. Vargina SG, Kuchuk LA, Gershtein VI, Karas FR. Transmission of Issyk Kul virus by Argas vespertilionis ticks in experiment. In Inst Virus Im Ivanov Akad Med Nauk SSSR p 1982
    [Google Scholar]
  55. Kohl C, Nitsche A, Kurth A. Update on Potentially Zoonotic Viruses of European Bats. Vaccines (Basel) 2021; 9:690 [View Article] [PubMed]
    [Google Scholar]
  56. Rizzo F, Edenborough KM, Toffoli R, Culasso P, Zoppi S et al. Coronavirus and paramyxovirus in bats from Northwest Italy. BMC Vet Res 2017; 13:1–11 [View Article]
    [Google Scholar]
  57. Chua KB, Wang LF, Lam SK, Crameri G, Yu M et al. Tioman virus, a novel paramyxovirus isolated from fruit bats in Malaysia. Virology 2001; 283:215–229 [View Article] [PubMed]
    [Google Scholar]
  58. Van Brussel K, Holmes EC. Zoonotic disease and virome diversity in bats. Curr Opin Virol 2022; 52:192–202 [View Article] [PubMed]
    [Google Scholar]
  59. Kurth A, Kohl C, Brinkmann A, Ebinger A, Harper JA et al. Novel paramyxoviruses in free-ranging European bats. PLoS One 2012; 7:e38688 [View Article] [PubMed]
    [Google Scholar]
  60. Kemenesi G, Dallos B, Görföl T, Boldogh S, Estók P et al. Molecular survey of RNA viruses in Hungarian bats: discovering novel astroviruses, coronaviruses, and caliciviruses. Vector Borne Zoonotic Dis 2014; 14:846–855 [View Article] [PubMed]
    [Google Scholar]
  61. Lazov CM, Belsham GJ, Bøtner A, Rasmussen TB. Full-Genome Sequences of Alphacoronaviruses and Astroviruses from Myotis and Pipistrelle Bats in Denmark. Viruses 2021; 13:1073 [View Article] [PubMed]
    [Google Scholar]
  62. Pettersson J-O, Ellström P, Ling J, Nilsson I, Bergström S et al. Circumpolar diversification of the Ixodes uriae tick virome. PLoS Pathoge1008759 2020; 16 [View Article]
    [Google Scholar]
  63. Wang B, Yang X-L, Li W, Zhu Y, Ge X-Y et al. Detection and genome characterization of four novel bat hepadnaviruses and a hepevirus in China. Virol J 2017; 14:40 [View Article] [PubMed]
    [Google Scholar]
  64. Drexler JF, Seelen A, Corman VM, Fumie Tateno A, Cottontail V et al. Bats worldwide carry hepatitis E virus-related viruses that form a putative novel genus within the family Hepeviridae. J Virol 2012; 86:9134–9147 [View Article] [PubMed]
    [Google Scholar]
  65. Kobayashi T, Murakami S, Yamamoto T, Mineshita K, Sakuyama M et al. Detection of bat hepatitis E virus RNA in microbats in Japan. Virus Genes 2018; 54:599–602 [View Article] [PubMed]
    [Google Scholar]
  66. Kobayashi D, Murota K, Itokawa K, Ejiri H, Amoa-Bosompem M et al. RNA virome analysis of questing ticks from Hokuriku District, Japan, and the evolutionary dynamics of tick-borne phleboviruses. Ticks Tick Borne Dis 2020; 11:101364 [View Article] [PubMed]
    [Google Scholar]
  67. Pettersson JH-O, Shi M, Bohlin J, Eldholm V, Brynildsrud OB et al. Characterizing the virome of Ixodes ricinus ticks from northern Europe. Sci Rep 2017; 7:10870 [View Article] [PubMed]
    [Google Scholar]
  68. Harvey E, Rose K, Eden J-S, Lo N, Abeyasuriya T et al. Extensive Diversity of RNA Viruses in Australian Ticks. J Virol 2019; 93:e01358-18 [View Article] [PubMed]
    [Google Scholar]
  69. Vandegrift KJ, Kapoor A. The Ecology of New Constituents of the Tick Virome and Their Relevance to Public Health. Viruses 2019; 11:529 [View Article] [PubMed]
    [Google Scholar]
  70. Shi M, White VL, Schlub T, Eden J-S, Hoffmann AA et al. No detectable effect of Wolbachia wMel on the prevalence and abundance of the RNA virome of Drosophila melanogaster. Proc Biol Sci 2018; 285:20181165 [View Article] [PubMed]
    [Google Scholar]
  71. Cross ST, Maertens BL, Dunham TJ, Rodgers CP, Brehm AL et al. Partitiviruses Infecting Drosophila melanogaster and Aedes aegypti Exhibit Efficient Biparental Vertical Transmission. J Virol 2020; 94:e01070-20 [View Article] [PubMed]
    [Google Scholar]
  72. Palomar AM, Veiga J, Portillo A, Santibáñez S, Václav R et al. Novel Genotypes of Nidicolous Argas Ticks and Their Associated Microorganisms From Spain. Front Vet Sci 2021; 8:243 [View Article]
    [Google Scholar]
  73. Socolovschi C, Kernif T, Raoult D, Borrelia PP. Rickettsia, and ehrlichia species in bat ticks, france, 2010. Emerg Infect Dis 2012; 18:1966
    [Google Scholar]
  74. Moustafa MAM, Mohamed WMA, Lau ACC, Chatanga E, Qiu Y et al. Novel symbionts and potential human pathogens excavated from argasid tick microbiomes that are shaped by dual or single symbiosis. Comput Struct Biotechnol J 2022; 20:1979–1992 [View Article] [PubMed]
    [Google Scholar]
  75. Zhmaeva ZM, Pchelkina AA, Belashova VS. Spontaneous infection of Argas vespertilionis with Rickettsia burnetii in the south of Kazakhstan. Med Parazitol (Mosk) 1966; 35:595–596 [PubMed]
    [Google Scholar]
  76. McBride WJH, Hanson JP, Miller R, Wenck D. Severe spotted fever group rickettsiosis, Australia. Emerg Infect Dis 2007; 13:1742–1744 [View Article] [PubMed]
    [Google Scholar]
  77. Nilsson K, Elfving K, Pahlson C. Rickettsia helvetica in patient with meningitis, Sweden, 2006. Emerg Infect Dis 2010; 16:490–492 [View Article] [PubMed]
    [Google Scholar]
  78. Moo-Llanes DA, Oca-Aguilar ACM de, Romero-Salas D, Sánchez-Montes S. Inferring the Potential Distribution of an Emerging Rickettsiosis in America: The Case of Rickettsia parkeri. Pathogens 2021; 10:592 [View Article] [PubMed]
    [Google Scholar]
  79. Silva-Ramos CR, Hidalgo M, Faccini-Martínez ÁA. Clinical, epidemiological, and laboratory features of Rickettsia parkeri rickettsiosis: A systematic review. Ticks Tick Borne Dis 2021; 12:101734 [View Article] [PubMed]
    [Google Scholar]
  80. Lindblom A, Severinson K, Nilsson K. Rickettsia felis infection in Sweden: report of two cases with subacute meningitis and review of the literature. Scand J Infect Dis 2010; 42:906–909 [View Article] [PubMed]
    [Google Scholar]
  81. Hunter DJ, Torkelson JL, Bodnar J, Mortazavi B, Laurent T et al. The rickettsia endosymbiont of ixodes pacificus contains all the genes of de novo folate biosynthesis. PLoS One 2015; 10:e0144552
    [Google Scholar]
  82. Matei IA, Corduneanu A, Sándor AD, Ionică AM, Panait L, Kalmár Z et al. Rickettsia spp. in bats of Romania: high prevalence of Rickettsia monacensis in two insectivorous bat species. Parasites and Vectors 2021; 14:1–8
    [Google Scholar]
  83. Zhao S, Yang M, Liu G, Hornok S, Zhao S, Sang C et al. Rickettsiae in the common pipistrelle Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) and the bat soft tick Argas vespertilionis (Ixodida: Argasidae). Parasites and Vectors 2020; 13:1–6
    [Google Scholar]
  84. Travanty NV, Ponnusamy L, Kakumanu ML, Nicholson WL, Apperson CS. Diversity and structure of the bacterial microbiome of the American dog tick, Dermacentor variabilis, is dominated by the endosymbiont Francisella. Symbiosis 2019; 79:239–250 [View Article]
    [Google Scholar]
  85. Bonnet SI, Pollet T. Update on the intricate tango between tick microbiomes and tick‐borne pathogens. Parasite Immunol 2021; 43:0–2 [View Article]
    [Google Scholar]
  86. Smith TA, Driscoll T, Gillespie JJ, Raghavan R. A Coxiella-like endosymbiont is A potential vitamin source for the Lone Star tick. Genome Biol Evol 2015; 7:831–838 [View Article] [PubMed]
    [Google Scholar]
  87. Zhong J, Jasinskas A, Barbour AG. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS One 2007; 2:e405 [View Article] [PubMed]
    [Google Scholar]
  88. Bonnet SI, Binetruy F, Hernández-Jarguín AM, Duron O. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission. Front Cell Infect Microbiol 2017; 7:236 [View Article] [PubMed]
    [Google Scholar]
  89. Khoo J-J, Chen F, Kho KL, Ahmad Shanizza AI, Lim F-S et al. Bacterial community in Haemaphysalis ticks of domesticated animals from the Orang Asli communities in Malaysia. Ticks Tick Borne Dis 2016; 7:929–937 [View Article] [PubMed]
    [Google Scholar]
  90. Estrada-Peña A, Cevidanes A, Sprong H, Millán J. Pitfalls in Tick and Tick-Borne Pathogens Research, Some Recommendations and a Call for Data Sharing. Pathogens 2021; 10:712 [View Article] [PubMed]
    [Google Scholar]
  91. Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI et al. Pathways to zoonotic spillover. Nat Rev Microbiol 2017; 15:502–510 [View Article] [PubMed]
    [Google Scholar]
  92. Sokolow SH, Nova N, Pepin KM, Peel AJ, Pulliam JRC et al. Ecological interventions to prevent and manage zoonotic pathogen spillover. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180342 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000942
Loading
/content/journal/mgen/10.1099/mgen.0.000942
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF

Supplementary material 5

PDF

Supplementary material 6

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error