1887

Abstract

Calculations predict that testing of 5 000–10 000 molecules and >1 billion US dollars (£0.8 billion, £1=$1.2) are required for one single drug to come to the market. A solution to this problem is to establish more efficient protocols that reduce the high rate of re-isolation and continuous rediscovery of natural products during early stages of the drug development process. The study of ‘rare actinobacteria’ has emerged as a possible approach for increasing the discovery rate of drug leads from natural sources. Here, we define a simple genomic metric, defined as biosynthetic novelty index (BiNI), that can be used to rapidly rank strains according to the novelty of the subset of encoding biosynthetic clusters. By comparing a subset of high-quality genomes from strains of different taxonomic and ecological backgrounds, we used the BiNI score to support the notion that rare actinobacteria encode more biosynthetic gene cluster (BGC) novelty. In addition, we present the isolation and genomic characterization, focused on specialized metabolites and phenotypic screening, of two isolates belonging to genera and from a highly oligotrophic environment. Our results show that both strains harbour a unique subset of BGCs compared to other members of the genera and . These BGCs are responsible for potent antimicrobial and cytotoxic bioactivity. The experimental data and analysis presented in this study contribute to the knowledge of genome mining analysis in rare actinobacteria and, most importantly, can serve to direct sampling efforts to accelerate early stages of the drug discovery pipeline.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000921
2023-01-20
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/1/mgen000921.html?itemId=/content/journal/mgen/10.1099/mgen.0.000921&mimeType=html&fmt=ahah

References

  1. Mullard A. $1.3 billion per drug?. Nat Rev Drug Discov 2020; 19:226 [View Article] [PubMed]
    [Google Scholar]
  2. Deore AB, Dhumane JR, Wagh R, Sonawane R. The stages of drug discovery and development process. Asian J Pharm Res Dev 2019; 7:62–67 [View Article]
    [Google Scholar]
  3. Marmann A, Aly AH, Lin W, Wang B, Proksch P. Co-cultivation--a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs 2014; 12:1043–1065 [View Article] [PubMed]
    [Google Scholar]
  4. Liu M, El-Hossary EM, Oelschlaeger TA, Donia MS, Quinn RJ et al. Potential of marine natural products against drug-resistant bacterial infections. Lancet Infect Dis 2019; 19:e237–e245 [View Article] [PubMed]
    [Google Scholar]
  5. Ranjani A, Dhanasekaran D, Gopinath PM. An introduction to actinobacteria. In Dhanasekaran D, Jiang Y. eds Actinobacteria – Basics and Biotechnological Applications London: InTech; 2016
    [Google Scholar]
  6. Metsä-Ketelä M, Salo V, Halo L, Hautala A, Hakala J et al. An efficient approach for screening minimal PKS genes from Streptomyces. FEMS Microbiol Lett 1999; 180:1–6 [View Article] [PubMed]
    [Google Scholar]
  7. Miao V, Brost R, Chapple J, She K, Coëffet-Le Gal M-F et al. The lipopeptide antibiotic A54145 biosynthetic gene cluster from Streptomyces fradiae. J Ind Microbiol Biotechnol 2006; 33:129–140 [View Article]
    [Google Scholar]
  8. Sottorff I, Wiese J, Lipfert M, Preußke N, Sönnichsen FD et al. Different secondary metabolite profiles of phylogenetically almost identical Streptomyces griseus strains originating from geographically remote locations. Microorganisms 2019; 7:166 [View Article] [PubMed]
    [Google Scholar]
  9. Manivasagan P, Kang K-H, Sivakumar K, Li-Chan ECY, Oh H-M et al. Marine actinobacteria: an important source of bioactive natural products. Environ Toxicol Pharmacol 2014; 38:172–188 [View Article] [PubMed]
    [Google Scholar]
  10. Poorinmohammad N, Bagheban-Shemirani R, Hamedi J. Genome mining for ribosomally synthesised and post-translationally modified peptides (RiPPs) reveals undiscovered bioactive potentials of actinobacteria. Antonie Van Leeuwenhoek 2019; 112:1477–1499 [View Article] [PubMed]
    [Google Scholar]
  11. Ren H, Shi C, Zhao H. Computational tools for discovering and engineering natural product biosynthetic pathways. iScience 2020; 23:100795 [View Article] [PubMed]
    [Google Scholar]
  12. Hubert J, Nuzillard J-M, Renault J-H. Dereplication strategies in natural product research: how many tools and methodologies behind the same concept?. Phytochem Rev 2017; 16:55–95 [View Article]
    [Google Scholar]
  13. Subramani R, Aalbersberg W. Culturable rare Actinomycetes: diversity, isolation and marine natural product discovery. Appl Microbiol Biotechnol 2013; 97:9291–9321 [View Article] [PubMed]
    [Google Scholar]
  14. Ding T, Yang L-J, Zhang W-D, Shen Y-H. The secondary metabolites of rare actinomycetes: chemistry and bioactivity. RSC Adv 2019; 9:21964–21988 [View Article] [PubMed]
    [Google Scholar]
  15. Dhakal D, Pokhrel AR, Shrestha B, Sohng JK. Marine rare actinobacteria: isolation, characterization, and strategies for harnessing bioactive compounds. Front Microbiol 2017; 8:1106 [View Article] [PubMed]
    [Google Scholar]
  16. Lechevalier HA, Lechevalier MP. Biology of actinomycetes. Annu Rev Microbiol 1967; 21:71–100 [View Article] [PubMed]
    [Google Scholar]
  17. Ye X, Anjum K, Song T, Wang W, Yu S et al. A new curvularin glycoside and its cytotoxic and antibacterial analogues from marine actinomycete Pseudonocardia sp. HS7. Nat Prod Res 2016; 30:1156–1161 [View Article] [PubMed]
    [Google Scholar]
  18. Igarashi Y, Ogura H, Furihata K, Oku N, Indananda C et al. Maklamicin, an antibacterial polyketide from an endophytic Micromonospora sp. J Nat Prod 2011; 74:670–674 [View Article] [PubMed]
    [Google Scholar]
  19. Bauermeister A, Calil FA, das C L Pinto F, Medeiros TCT, Almeida LC et al. Pradimicin-IRD from Amycolatopsis sp. IRD-009 and its antimicrobial and cytotoxic activities. Nat Prod Res 2019; 33:1713–1720 [View Article] [PubMed]
    [Google Scholar]
  20. Bérdy J. Bioactive microbial metabolites. J Antibiot 2005; 58:1–26 [View Article]
    [Google Scholar]
  21. Tiwari K, Gupta RK. Diversity and isolation of rare actinomycetes: an overview. Crit Rev Microbiol 2013; 39:256–294 [View Article] [PubMed]
    [Google Scholar]
  22. Subramani R, Sipkema D. Marine rare actinomycetes: a promising source of structurally diverse and unique novel natural products. Mar Drugs 2019; 17:249 [View Article] [PubMed]
    [Google Scholar]
  23. Gasol JM. Bacteria inoligotrophic environments: starvation-survival lifestyle – Richard Y. Morita. Int Microbiol 1998; 1:241–242
    [Google Scholar]
  24. Zhang B, Wu X, Tai X, Sun L, Wu M et al. Variation in actinobacterial community composition and potential function in different soil ecosystems belonging to the arid Heihe River Basin of Northwest China. Front Microbiol 2019; 10:2209 [View Article]
    [Google Scholar]
  25. Adam D, Maciejewska M, Naômé A, Martinet L, Coppieters W et al. Isolation, characterization, and antibacterial activity of hard-to-culture actinobacteria from cave moonmilk deposits. Antibiotics 2018; 7:28 [View Article]
    [Google Scholar]
  26. Fang B-Z, Salam N, Han M-X, Jiao J-Y, Cheng J et al. Insights on the effects of heat pretreatment, pH, and calcium salts on isolation of rare Actinobacteria from Karstic Caves. Front Microbiol 2017; 8:1535 [View Article] [PubMed]
    [Google Scholar]
  27. Arocha-Garza HF, Canales-Del Castillo R, Eguiarte LE, Souza V, De la Torre-Zavala S. High diversity and suggested endemicity of culturable Actinobacteria in an extremely oligotrophic desert oasis. PeerJ 2017; 5:e3247 [View Article] [PubMed]
    [Google Scholar]
  28. Rebollar EA, Avitia M, Eguiarte LE, González-González A, Mora L et al. Water-sediment niche differentiation in ancient marine lineages of Exiguobacterium endemic to the Cuatro Cienegas Basin. Environ Microbiol 2012; 14:2323–2333 [View Article] [PubMed]
    [Google Scholar]
  29. Souza V, Siefert JL, Escalante AE, Elser JJ, Eguiarte LE. The Cuatro Ciénegas Basin in Coahuila, Mexico: an astrobiological Precambrian Park. Astrobiology 2012; 12:641–647 [View Article] [PubMed]
    [Google Scholar]
  30. Elser JJ, Schampel JH, Garcia-Pichel F, Wade BD, Souza V et al. Effects of phosphorus enrichment and grazing snails on modern stromatolitic microbial communities. Freshwater Biol 2005; 50:1808–1825 [View Article]
    [Google Scholar]
  31. Nitti A, Daniels CA, Siefert J, Souza V, Hollander D et al. Spatially resolved genomic, stable isotopic, and lipid analyses of a modern freshwater microbialite from Cuatro Ciénegas, Mexico. Astrobiology 2012; 12:685–698 [View Article] [PubMed]
    [Google Scholar]
  32. Gallegos-Lopez S, Mejia-Ponce PM, Gonzalez-Salazar LA, Rodriguez-Orduña L, Souza-Saldivar V et al. Draft genome sequence of Streptomyces sp. strain C8S0, isolated from a highly oligotrophic sediment. Microbiol Resour Announc 2020; 9:e01441-19 [View Article]
    [Google Scholar]
  33. Cruz-Morales P, Ramos-Aboites HE, Licona-Cassani C, Selem-Mójica N, Mejía-Ponce PM et al. Actinobacteria phylogenomics, selective isolation from an iron oligotrophic environment and siderophore functional characterization, unveil new desferrioxamine traits. FEMS Microbiol Ecol 2017; 93:fix086 [View Article] [PubMed]
    [Google Scholar]
  34. Ramos-Aboites H, Yáñez-Olvera A, Barona-Gómez F. Bacterial siderophore-mediated iron acquisition in Cuatro Cienegas Basin: a complex community interplay made simpler in the light of evolutionary genomics. In García-Oliva F, Elser J, Souza V. eds Ecosystem Ecology and Geochemistry of Cuatro Cienegas Cham: Springer; 2018
    [Google Scholar]
  35. Hobbs G, Frazer CM, Gardner DCJ, Cullum JA, Oliver SG. Dispersed growth of Streptomyces in liquid culture. Appl Microbiol Biotechnol 1989; 31:272–277 [View Article]
    [Google Scholar]
  36. International Streptomyces Project-2 Medium (ISP-2), ActinoBase. n.d http://actinobase.org/index.php/ISP2
  37. ISP4 Medium, ActinoBase. n.d http://actinobase.org/index.php/ISP4 accessed 31 October 2021
  38. R5, ActinoBase. n.d http://actinobase.org/index.php/R5 accessed 1 November 2021
  39. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article]
    [Google Scholar]
  40. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [View Article] [PubMed]
    [Google Scholar]
  41. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article]
    [Google Scholar]
  42. Chaudhari NM, Gupta VK, Dutta C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep 2016; 6:24373 [View Article] [PubMed]
    [Google Scholar]
  43. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004; 5:113 [View Article] [PubMed]
    [Google Scholar]
  44. Kück P, Meusemann K. FASconCAT: convenient handling of data matrices. Mol Phylogenet Evol 2010; 56:1115–1118 [View Article] [PubMed]
    [Google Scholar]
  45. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  46. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  47. Kautsar SA, Blin K, Shaw S, Navarro-Muñoz JC, Terlouw BR et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res 2020; 48:D454–D458 [View Article] [PubMed]
    [Google Scholar]
  48. Navarro-Muñoz JC, Selem-Mojica N, Mullowney MW, Kautsar SA, Tryon JH et al. A computational framework to explore large-scale biosynthetic diversity. Nat Chem Biol 2020; 16:60–68 [View Article] [PubMed]
    [Google Scholar]
  49. Kautsar SA, Blin K, Shaw S, Weber T, Medema MH. BiG-FAM: the biosynthetic gene cluster families database. Nucleic Acids Res 2021; 49:D490–D497 [View Article] [PubMed]
    [Google Scholar]
  50. Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis 2009; 49:1749–1755 [View Article] [PubMed]
    [Google Scholar]
  51. Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc 2018; 2018:prot095505 [View Article]
    [Google Scholar]
  52. Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM et al. The microbial genomes atlas (MiGA) webserver: taxonomic and gene diversity analysis of archaea and bacteria at the whole genome level. Nucleic Acids Res 2018; 46:W282–W288 [View Article] [PubMed]
    [Google Scholar]
  53. Li X, Zhang L, Ding Y, Gao Y, Ruan J et al. Lentzea jiangxiensis sp. nov., isolated from acidic soil. Int J Syst Evol Microbiol 2012; 62:2342–2346 [View Article] [PubMed]
    [Google Scholar]
  54. Kämpfer P, Glaeser SP, Busse H-J, Abdelmohsen UR, Ahmed S et al. Actinokineospora spheciospongiae sp. nov., isolated from the marine sponge Spheciospongia vagabunda. Int J Syst Evol Microbiol 2015; 65:879–884 [View Article] [PubMed]
    [Google Scholar]
  55. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018; 9:02007 [View Article]
    [Google Scholar]
  56. Camas M, Veyisoglu A, Tatar D, Saygin H, Cetin D et al. Lechevalieria nigeriaca sp. nov., isolated from arid soil. Int J Syst Evol Microbiol 2013; 63:3750–3754 [View Article] [PubMed]
    [Google Scholar]
  57. Labeda DP, Price NP, Tan GYA, Goodfellow M, Klenk HP. Emended description of the genus Actinokineospora Hasegawa 1988 and transfer of Amycolatopsis fastidiosa Henssen et al. 1987 as Actinokineospora fastidiosa comb. nov. Int J Syst Evol Microbiol 2010; 60:1444–1449 [View Article] [PubMed]
    [Google Scholar]
  58. Wang Y, Shi J, Liu T, Zhang Y, Zhang L et al. Actinokineospora xionganensis sp. nov., a filamentous actinomycete isolated from the lakeside soil of Baiyangdian. Antonie van Leeuwenhoek 2021; 114:487–496 [View Article]
    [Google Scholar]
  59. Lei Y-J, Xia Z-F, Luo X-X, Zhang L-L. Actinokineospora pegani sp. nov., an endophytic actinomycete isolated from the surface-sterilized root of Peganum harmala L. Int J Syst Evol Microbiol 2020; 70:4358–4363 [View Article]
    [Google Scholar]
  60. Aouiche A, Bouras N, Mokrane S, Zitouni A, Schumann P et al. Actinokineospora mzabensis sp. nov., a novel actinomycete isolated from Saharan soil. Antonie van Leeuwenhoek 2015; 107:291–296 [View Article] [PubMed]
    [Google Scholar]
  61. Ping M, Yun-Lin Z, Jun L, Jian G, Zheng-Gang X. Proposal of Lentzea deserti (Okoro et al. 2010) Nouioui et al. 2018 as a later heterotypic synonym of Lentzea atacamensis (Okoro et al. 2010) Nouioui et al. 2018 and an emended description of Lentzea atacamensis. PLoS One 2021; 16:e0246533 [View Article]
    [Google Scholar]
  62. Yuan L-J, Zhang Y-Q, Yu L-Y, Liu H-Y, Guan Y et al. Alloactinosynnema album gen. nov., sp. nov., a member of the family actinosynnemataceae isolated from soil. Int J Syst Evol Microbiol 2010; 60:39–43 [View Article]
    [Google Scholar]
  63. Intra B, Greule A, Bechthold A, Euanorasetr J, Paululat T et al. Thailandins A and B, new polyene macrolactone compounds isolated from Actinokineospora bangkokensis strain 44EHW(T), possessing antifungal activity against anthracnose fungi and pathogenic yeasts. J Agric Food Chem 2016; 64:5171–5179 [View Article]
    [Google Scholar]
  64. Actinokineospora enzanensis, NamesforLife. n.d https://www.namesforlife.com/10.1601/nm.6783 accessed 3 April 2022
  65. Otoguro M, Hayakawa M, Yamazaki T, Tamura T, Hatano K et al. Numerical phenetic and phylogenetic analyses of Actinokineospora isolates, with a description of Actinokineospora auranticolor sp. nov. and Actinokineospora enzanensis sp. nov. Actinomycetologica 2001; 15:30–39 [View Article]
    [Google Scholar]
  66. Tamura T, Hayakawa M, Nonomura H, Yokota A, Hatano K. Four new species of the genus Actinokineospora: Actinokineospora inagensis sp. nov., Actinokineospora globicatena sp. nov., Actinokineospora terrae sp. nov., and Actinokineospora diospyrosa sp. nov. Int J Syst Bacteriol 1995; 45:371–378 [View Article]
    [Google Scholar]
  67. Xie Q, Wang Y, Huang Y, Wu Y, Ba F et al. Description of Lentzea flaviverrucosa sp. nov. and transfer of the type strain of Saccharothrix aerocolonigenes subsp. staurosporea to Lentzea albida. Int J Syst Evol Microbiol 2002; 52:1815–1820 [View Article]
    [Google Scholar]
  68. Huang J, Huang Y. Lentzea tibetensis sp. nov., a novel Actinobacterium with antimicrobial activity isolated from soil of the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2021; 71:004976 [View Article]
    [Google Scholar]
  69. Cao C-L, Zhou X-Q, Qin S, Tao F-X, Jiang J-H et al. Lentzea guizhouensis sp. nov., a novel lithophilous actinobacterium isolated from limestone from the Karst area, Guizhou, China. Antonie Van Leeuwenhoek 2015; 108:1365–1372 [View Article]
    [Google Scholar]
  70. Nikou MM, Ramezani M, Amoozegar MA, Fazeli SAS, Schumann P et al. Alloactinosynnema iranicum sp. nov., a rare actinomycete isolated from a hypersaline wetland, and emended description of the genus Alloactinosynnema. Int J Syst Evol Microbiol 2014; 64:1173–1179 [View Article] [PubMed]
    [Google Scholar]
  71. Souza V, Moreno-Letelier A, Travisano M, Alcaraz LD, Olmedo G et al. The lost world of Cuatro Ciénegas Basin, a relictual bacterial niche in a desert oasis. Elife 2018; 7:e38278 [View Article] [PubMed]
    [Google Scholar]
  72. Elser JJ, Watts J, Schampel JH, Farmer J. Early Cambrian food webs on a trophic knife-edge? A hypothesis and preliminary data from a modern stromatolite-based ecosystem. Ecol Lett 2006; 9:295–303 [View Article] [PubMed]
    [Google Scholar]
  73. Dai D, Lu H, Xing P, Wu Q. Comparative genomic analyses of the genus Nesterenkonia unravels the genomic adaptation to polar extreme environments. Microorganisms 2022; 10:233 [View Article]
    [Google Scholar]
  74. Kautsar SA, van der Hooft JJJ, de Ridder D, Medema MH. BiG-SLiCE: a highly scalable tool maps the diversity of 1.2 million biosynthetic gene clusters. Gigascience 2021; 10:giaa154 [View Article] [PubMed]
    [Google Scholar]
  75. Gavriilidou A, Kautsar SA, Zaburannyi N, Krug D, Müller R et al. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nat Microbiol 2022; 7:726–735 [View Article] [PubMed]
    [Google Scholar]
  76. Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 2014; 158:412–421 [View Article] [PubMed]
    [Google Scholar]
  77. Webb C, Manan MA. Design aspects of solid state fermentation as applied to microbial bioprocessing. J Appl Biotechnol Bioeng 2017; 4:511–532 [View Article]
    [Google Scholar]
  78. Rajaram SK, Ahmad P, Sujani Sathya Keerthana S, Jeya Cressida P, Ganesh Moorthy I et al. Extraction and purification of an antimicrobial bioactive element from lichen associated Streptomyces olivaceus LEP7 against wound inhabiting microbial pathogens. J King Saud Univ Sci 2020; 32:2009–2015 [View Article]
    [Google Scholar]
  79. Wichner D, Idris H, Houssen WE, McEwan AR, Bull AT et al. Isolation and anti-HIV-1 integrase activity of lentzeosides A-F from extremotolerant Lentzea sp. H45, a strain isolated from a high-altitude Atacama Desert soil. J Antibiot 2017; 70:448–453 [View Article]
    [Google Scholar]
  80. Hussain A, Rather MA, Dar MS, Aga MA, Ahmad N et al. Novel bioactive molecules from Lentzea violacea strain AS 08 using one strain-many compounds (OSMAC) approach. Bioorg Med Chem Lett 2017; 27:2579–2582 [View Article] [PubMed]
    [Google Scholar]
  81. Tawfike A, Attia EZ, Desoukey SY, Hajjar D, Makki AA et al. New bioactive metabolites from the elicited marine sponge-derived bacterium Actinokineospora spheciospongiae sp. nov. AMB Express 2019; 9:12 [View Article] [PubMed]
    [Google Scholar]
  82. Niladevi KN, Sukumaran RK, Prema P. Utilization of rice straw for laccase production by Streptomyces psammoticus in solid-state fermentation. J Ind Microbiol Biotechnol 2007; 34:665–674 [View Article] [PubMed]
    [Google Scholar]
  83. Labeda DP, Hatano K, Kroppenstedt RM, Tamura T. Revival of the genus Lentzea and proposal for Lechevalieria gen. nov. Int J Syst Evol Microbiol 2001; 51:1045–1050 [View Article]
    [Google Scholar]
  84. Sun X, Zhao J, Luo X, Hou W, Xiang W et al. Lentzea alba sp. nov., a novel actinobacterium isolated from soil. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  85. Lee SD, Kim ES, Roe JH, Kim J, Kang SO et al. Saccharothrix violacea sp. nov., isolated from a gold mine cave, and Saccharothrix albidocapillata comb. nov. Int J Syst Evol Microbiol 2000; 50 Pt 3:1315–1323 [View Article]
    [Google Scholar]
  86. Yan XC, Deng YX. Streptomyces flavoverrucosus sp. nov., a novel actinomycete from soil. Acta Microbiol Sin 1966; 12:207–216
    [Google Scholar]
  87. Yassin AF, Rainey FA, Brzezinka H, Jahnke KD, Weissbrodt H et al. Lentzea gen. nov., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1995; 45:357–363 [View Article]
    [Google Scholar]
  88. Li D, Jiang H, Han L, Li Y, Zhao J et al. Lentzea terrae sp. nov., isolated from soil and an emended description of Lentzea soli. Int J Syst Evol Microbiol 2018; 68:3528–3533 [View Article]
    [Google Scholar]
  89. Cao C, Yuan B, Qin S, Jiang J, Tao F et al. Lentzea pudingi sp. nov., isolated from a weathered limestone sample in a karst area. Int J Syst Evol Microbiol 2017; 67:4873–4878 [View Article]
    [Google Scholar]
  90. Labeda DP, Donahue JM, Sells SF, Kroppenstedt RM. Lentzea kentuckyensis sp. nov., of equine origin. Int J Syst Evol Microbiol 2007; 57:1780–1783 [View Article]
    [Google Scholar]
  91. Okoro CK, Bull AT, Mutreja A, Rong X, Huang Y et al. Lechevalieria atacamensis sp. nov., Lechevalieria deserti sp. nov. and Lechevalieria roselyniae sp. nov., isolated from hyperarid soils. Int J Syst Evol Microbiol 2010; 60:296–300 [View Article]
    [Google Scholar]
  92. Zhang J, Xie Q, Liu Z, Goodfellow M. Lechevalieria fradiae sp. nov., a novel actinomycete isolated from soil in China. Int J Syst Evol Microbiol 2007; 57:832–836 [View Article]
    [Google Scholar]
  93. Wang W, Zhang Z, Tang Q, Mao J, Wei D et al. Lechevalieria xinjiangensis sp. nov., a novel actinomycete isolated from radiation-polluted soil in China. Int J Syst Evol Microbiol 2007; 57:2819–2822 [View Article]
    [Google Scholar]
  94. Narayana KJP, Rao V, Vijayalakshmi M. Studies on bioactive metabolites produced by lechevalieria flava. Res J Microbiol 2007; 2:871–875
    [Google Scholar]
  95. Labeda DP. Transfer of “Nocardia aerocolonigenes” (Shinobu and Kawato 1960) Pridham 1970 into the Genus Saccharothrix Labeda, Testa, Lechevalier, and Lechevalier 1984 as Saccharothrix aerocolonigenes sp. nov. Int J Syst Bacteriol 1986; 36:109–110 [View Article]
    [Google Scholar]
  96. Intra B, Matsumoto A, Inahashi Y, Ōmura S, Takahashi Y et al. Actinokineospora bangkokensis sp. nov., isolated from rhizospheric soil. Int J Syst Evol Microbiol 2013; 63:2655–2660 [View Article]
    [Google Scholar]
  97. Lisdiyanti P, Otoguro M, Ratnakomala S, Lestari Y, Hastuti RD et al. Actinokineospora baliensis sp. nov., Actinokineospora cibodasensis sp. nov. and Actinokineospora cianjurensis sp. nov., isolated from soil and plant litter. Int J Syst Evol Microbiol 2010; 60:2331–2335 [View Article]
    [Google Scholar]
  98. Henssen A, Kothe HW, Kroppenstedt RM. Transfer of Pseudonocardia azurea and “Pseudonocardia fastidiosa” to the genus Amycolatopsis, with emended species description. Int J Syst Bacteriol 1987; 37:292–295 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000921
Loading
/content/journal/mgen/10.1099/mgen.0.000921
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error