1887

Abstract

Comparing obligate endosymbionts with their free-living relatives is a powerful approach to investigate the evolution of symbioses, and it has led to the identification of several genomic traits consistently associated with the establishment of symbiosis. ‘ Nebulobacter yamunensis’ is an obligate bacterial endosymbiont of the ciliate that seemingly depends on its host for survival. A subsequently characterized bacterial strain with an identical 16S rRNA gene sequence, named , can instead be maintained in pure culture. We analysed the genomes of ‘ Nebulobacter’ and seeking to identify key differences between their functional traits and genomic structure that might shed light on a recent transition to obligate endosymbiosis. Surprisingly, we found almost no such differences: the two genomes share a high level of sequence identity, the same overall structure, and largely overlapping sets of genes. The similarities between the genomes of the two strains are at odds with their different ecological niches, confirmed here with a parallel growth experiment. Although other pairs of closely related symbiotic/free-living bacteria have been compared in the past, ‘ Nebulobacter’ and represent an extreme example proving that a small number of (unknown) factors might play a pivotal role in the earliest stages of obligate endosymbiosis establishment.

Funding
This study was supported by the:
  • Gordon and Betty Moore Foundation (Award https://doi.org/10.37807/GBMF9201)
    • Principle Award Recipient: PatrickKeeling
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000909
2022-12-14
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/12/mgen000909.html?itemId=/content/journal/mgen/10.1099/mgen.0.000909&mimeType=html&fmt=ahah

References

  1. Douglas AE. How multi-partner endosymbioses function. Nat Rev Microbiol 2016; 14:731–743 [View Article] [PubMed]
    [Google Scholar]
  2. McCutcheon JP, Boyd BM, Dale C. The life of an insect endosymbiont from the cradle to the grave. Curr Biol 2019; 29:R485–R495 [View Article]
    [Google Scholar]
  3. Dubilier N, Bergin C, Lott C. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 2008; 6:725–740 [View Article] [PubMed]
    [Google Scholar]
  4. McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci 2013; 110:3229–3236 [View Article]
    [Google Scholar]
  5. Müller DB, Vogel C, Bai Y, Vorholt JA. The plant microbiota: systems-level insights and perspectives. Annu Rev Genet 2016; 50:211–234 [View Article]
    [Google Scholar]
  6. Husnik F, Tashyreva D, Boscaro V, George EE, Lukeš J et al. Bacterial and archaeal symbioses with protists. Curr Biol 2021; 31:R862–R877 [View Article] [PubMed]
    [Google Scholar]
  7. Fokin SI, Serra V. Bacterial symbiosis in ciliates (Alveolata, Ciliophora): roads traveled and those still to be taken. J Eukaryot Microbiol 2022; 69:e12886 [View Article]
    [Google Scholar]
  8. Boscaro V, Husnik F, Vannini C, Keeling PJ. Symbionts of the ciliate Euplotes: diversity, patterns and potential as models for bacteria-eukaryote endosymbioses. Proc Biol Sci 2019; 286:20190693 [View Article]
    [Google Scholar]
  9. Boscaro V, Syberg-Olsen MJ, Irwin NAT, George EE, Vannini C et al. All essential endosymbionts of the ciliate Euplotes are cyclically replaced. Curr Biol 2022; 32:R826–R827 [View Article] [PubMed]
    [Google Scholar]
  10. Boscaro V, Vannini C, Fokin SI, Verni F, Petroni G. Characterization of “Candidatus Nebulobacter yamunensis” from the cytoplasm of Euplotes aediculatus (Ciliophora, Spirotrichea) and emended description of the family Francisellaceae. Syst Appl Microbiol 2012; 35:432–440 [View Article] [PubMed]
    [Google Scholar]
  11. Chiellini C, Pasqualetti C, Lanzoni O, Fagorzi C, Bazzocchi C et al. Harmful effect of Rheinheimera sp. Rprs3 (Gammaproteobacteria) against the protist Euplotes aediculatus (Ciliophora, Spirotrichea): insights into the ecological role of antimicrobial compounds from environmental bacterial strains. Front Microbiol 2019; 10:510 [View Article]
    [Google Scholar]
  12. Vannini C, Petroni G, Verni F, Rosati G. Polynucleobacter bacteria in the brackish-water species Euplotes harpa (Ciliata Hypotrichia). J Eukaryot Microbiol 2005; 52:116–122 [View Article]
    [Google Scholar]
  13. Xiao M, Salam N, Liu L, Jiao JY, Zheng ML et al. Fastidiosibacter lacustris gen. nov., sp. nov., isolated from a lake water sample, and proposal of Fastidiosibacteraceae fam. nov. within the order Thiotrichales. Int J Syst Evol Microbiol 2018; 68:347–352 [View Article]
    [Google Scholar]
  14. Boscaro V, Felletti M, Vannini C, Ackerman MS, Chain PSG et al. Polynucleobacter necessarius, a model for genome reduction in both free-living and symbiotic bacteria. Proc Natl Acad Sci 2013; 110:18590–18595 [View Article]
    [Google Scholar]
  15. Boscaro V, Kolisko M, Felletti M, Vannini C, Lynn DH et al. Parallel genome reduction in symbionts descended from closely related free-living bacteria. Nat Ecol Evol 2017; 1:1160–1167 [View Article]
    [Google Scholar]
  16. Renoz F, Foray V, Ambroise J, Baa-Puyoulet P, Bearzatto B et al. At the gate of mutualism: identification of genomic traits predisposing to insect-bacterial symbiosis in pathogenic strains of the aphid symbiont Serratia symbiotica. Front Cell Infect Microbiol 2021; 11:660007 [View Article]
    [Google Scholar]
  17. Oakeson KF, Gil R, Clayton AL, Dunn DM, von Niederhausern AC et al. Genome degeneration and adaptation in a nascent stage of symbiosis. Genome Biol Evol 2014; 6:76–93 [View Article]
    [Google Scholar]
  18. Tláskal V, Pylro VS, Žifčáková L, Baldrian P. Ecological divergence within the enterobacterial genus Sodalis: from insect symbionts to inhabitants of decomposing deadwood. Front Microbiol 2021; 12:668644 [View Article]
    [Google Scholar]
  19. Giannotti D, Boscaro V, Husnik F, Vannini C, Keeling PJ. The “other” Rickettsiales: an overview of the family “Candidatus Midichloriaceae". Appl Env Microbiol 2022; 88:6 [View Article]
    [Google Scholar]
  20. Laetsch DR, Blaxter ML. BlobTools: interrogation of genome assemblies version 1; peer review: 2 approved with reservations. F1000Res 2017; 6:1287 [View Article]
    [Google Scholar]
  21. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  22. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012; 28:464–469 [View Article] [PubMed]
    [Google Scholar]
  23. Syberg-Olsen MJ, Garber AI, Keeling PJ, McCutcheon JP, Husnik F. Pseudofinder: detection of pseudogenes in prokaryotic genomes. Mol Biol Evol 2022; 39:msac153 [View Article]
    [Google Scholar]
  24. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research 2007; 35:W182–W185 [View Article]
    [Google Scholar]
  25. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article]
    [Google Scholar]
  26. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol 2018; 14:e1005944 [View Article]
    [Google Scholar]
  27. Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004; 14:1394–1403 [View Article]
    [Google Scholar]
  28. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  29. Abby SS, Néron B, Ménager H, Touchon M, Rocha EPC. MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems. PLoS ONE 2014; 9:e110726 [View Article]
    [Google Scholar]
  30. Mareuil F, Doppelt-Azeroual O, Ménager H. A public Galaxy Platform at Pasteur used as an execution engine for web services. F1000Res 2017; 6:1020 [View Article]
    [Google Scholar]
  31. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 2018; 46:W537–W544 [View Article]
    [Google Scholar]
  32. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–6 [View Article] [PubMed]
    [Google Scholar]
  33. Vannini C, Ferrantini F, Ristori A, Verni F, Petroni G. Betaproteobacterial symbionts of the ciliate Euplotes: origin and tangled evolutionary path of an obligate microbial association. Environ Microbiol 2012; 14:2553–2563 [View Article] [PubMed]
    [Google Scholar]
  34. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics New York: Wiley; 1991 pp 115–147
    [Google Scholar]
  35. Serra V, Gammuto L, Nitla V, Castelli M, Lanzoni O et al. Morphology, ultrastructure, genomics, and phylogeny of Euplotes vanleeuwenhoeki sp. nov. and its ultra-reduced endosymbiont “Candidatus Pinguicoccus supinus” sp. nov. Sci Rep 2020; 10:20311 [View Article]
    [Google Scholar]
  36. Sjödin A, Ohrman C, Bäckman S, Lärkeryd A, Granberg M et al. Complete genome sequence of Francisella endociliophora strain FSC1006, isolated from a laboratory culture of the marine ciliate Euplotes raikovi. Genome Announc 2014; 2:e01227-14 [View Article]
    [Google Scholar]
  37. Vallesi A, Sjödin A, Petrelli D, Luporini P, Taddei AR et al. A new species of the γ-proteobacterium Francisella, F. adeliensis sp. nov., endocytobiont in an Antarctic marine ciliate and potential evolutionary forerunner of pathogenic species. Microb Ecol 2019; 77:587–596 [View Article]
    [Google Scholar]
  38. Gottlieb Y, Ghanim M, Gueguen G, Kontsedalov S, Vavre F et al. Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB J 2008; 22:2591–2599 [View Article] [PubMed]
    [Google Scholar]
  39. Guglielmini J, Néron B, Abby SS, Garcillán-Barcia MP, de la Cruz F et al. Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion. Nucleic Acids Res 2014; 42:5715–5727 [View Article] [PubMed]
    [Google Scholar]
  40. Carvalho CL, Lopes de Carvalho I, Zé-Zé L, Núncio MS, Duarte EL. Tularaemia: a challenging zoonosis. Comp Immunol Microbiol Infect Dis 2014; 37:85–96 [View Article]
    [Google Scholar]
  41. Colquhoun DJ, Duodu S. Francisella infections in farmed and wild aquatic organisms. Vet Res 2011; 42:47 [View Article]
    [Google Scholar]
  42. Petersen JM, Carlson J, Yockey B, Pillai S, Kuske C et al. Direct isolation of Francisella spp. from environmental samples. Lett Appl Microbiol 2009; 48:663–667 [View Article] [PubMed]
    [Google Scholar]
  43. Hindré T, Knibbe C, Beslon G, Schneider D. New insights into bacterial adaptation through in vivo and in silico experimental evolution. Nat Rev Microbiol 2012; 10:352–365 [View Article] [PubMed]
    [Google Scholar]
  44. Pettengill EA, Pettengill JB, Binet R. Phylogenetic analyses of Shigella and enteroinvasive Escherichia coli for the identification of molecular epidemiological markers: whole-genome comparative analysis does not support distinct genera designation. Front Microbiol 2015; 6:1573 [View Article]
    [Google Scholar]
  45. van den Beld MJC, Reubsaet FAG. Differentiation between Shigella, enteroinvasive Escherichia coli (EIEC) and noninvasive Escherichia coli. Eur J Clin Microbiol Infect Dis 2012; 31:899–904 [View Article] [PubMed]
    [Google Scholar]
  46. Perreau J, Patel DJ, Anderson H, Maeda GP, Elston KM et al. Vertical transmission at the pathogen-symbiont interface: Serratia symbiotica and aphids. mBio 2021; 12:e00359-21 [View Article]
    [Google Scholar]
  47. Beinart RA, Rotterová J, Čepička I, Gast RJ, Edgcomb VP. The genome of an endosymbiotic methanogen is very similar to those of its free-living relatives. Environ Microbiol 2018; 20:2538–2551 [View Article]
    [Google Scholar]
  48. Koga R, Moriyama M, Onodera-Tanifuji N, Ishii Y, Takai H et al. Single mutation makes Escherichia coli an insect mutualist. Nat Microbiol 2022; 7:1141–1150 [View Article] [PubMed]
    [Google Scholar]
  49. Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol 2021; 38:4647–4654 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000909
Loading
/content/journal/mgen/10.1099/mgen.0.000909
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

EXCEL

Supplementary material 3

EXCEL

Supplementary material 4

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error