1887

Abstract

is a bacterium that is found in many agronomic crops and agricultural pests. Here, we isolated a strain (Lstr) from the rice planthopper , a notorious pest that feeds on rice plant sap and transmits rice viruses, in order to examine its genome and biology. Lstr is an insect symbiont that is pathogenic to the host insect and appears to mostly inhabit the gut. Its pathogenicity thus raises the possibility of using the Lstr strain as a biological agent. To this end, we analysed the genome of the Lstr strain and compared it with the genomes of other species. Our analysis of these genomes shows that can be divided into two mono-phylogenetic clades (clades one and two). The Lstr strain belongs to clade two and is grouped with strains that were isolated from rice or rice-associated samples. A comparative genomic analysis shows that clade two differs from clade one in many genomic characteristics including genome structures, mobile elements, and categories of coding proteins. The genomes of clade two . are significantly smaller, have much fewer coding sequences but more pseudogenes than those of clade one, suggesting that clade two species are at the early stage of genome reduction. On the other hand, has a type VI secretion system that is highly variable but cannot be separated by clades. These results clarify our understanding of ’ phylogenetic diversity and provide clues to the interactions between , host insect, and plant that may lead to advances in rice protection and pest control.

Funding
This study was supported by the:
  • Natural Science Foundation of Jiangsu Province (Award BK20211213)
    • Principle Award Recipient: Xiao-LiBing
  • Central University Basic Research Fund of China (Award KJQN202110)
    • Principle Award Recipient: Xiao-LiBing
  • National Natural Science Foundation of China (Award 32020103011)
    • Principle Award Recipient: Xiao-YueHong
  • National Natural Science Foundation of China (Award 32001905)
    • Principle Award Recipient: Xiao-LiBing
  • National Key R&D Program of China (Award 2021YFD1401100)
    • Principle Award Recipient: BingXiao-Li
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000907
2022-12-05
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/12/mgen000907.html?itemId=/content/journal/mgen/10.1099/mgen.0.000907&mimeType=html&fmt=ahah

References

  1. Weller-Stuart T, De Maayer P, Coutinho T. Pantoea ananatis: genomic insights into a versatile pathogen. Mol Plant Pathol 2017; 18:1191–1198 [View Article]
    [Google Scholar]
  2. Serrano FB. Bacterial fruitlet brown-rot of pineapple in the philippines. Philipp J Sci 1928; 36:271–305
    [Google Scholar]
  3. Yu L, Yang C, Ji Z, Zeng Y, Liang Y et al. First report of new bacterial leaf blight of rice caused by Pantoea ananatis in Southeast China. Plant Dis 2022; 106:310 [View Article]
    [Google Scholar]
  4. Gitaitis R, Walcott R, Culpepper S, Sanders H, Zolobowska L et al. Recovery of Pantoea ananatis, causal agent of center rot of onion, from weeds and crops in Georgia, USA. Crop Protection 2002; 21:983–989 [View Article]
    [Google Scholar]
  5. Coutinho TA, Preisig O, Mergaert J, Cnockaert MC, Riedel K-H et al. Bacterial blight and dieback of Eucalyptus species, hybrids, and clones in South Africa. Plant Dis 2002; 86:20–25 [View Article]
    [Google Scholar]
  6. Coutinho TA, Venter SN. Pantoea ananatis: an unconventional plant pathogen. Mol Plant Pathol 2009; 10:325–335 [View Article] [PubMed]
    [Google Scholar]
  7. Kim HJ, Lee JH, Kang BR, Rong X, McSpadden Gardener BB et al. Draft genome sequence of Pantoea ananatis B1-9, a nonpathogenic plant growth-promoting bacterium. J Bacteriol 2012; 194:729 [View Article]
    [Google Scholar]
  8. Takahashi K, Watanabe K, Sato M. Survival and characteristics of ice nucleation-active bacteria on mulberry trees (Morus spp.) and in mulberry pyralid (Glyphodes pyloalis). Jpn J Phytopathol 1995; 61:439–443 [View Article]
    [Google Scholar]
  9. Watanabe K, Sato M. Gut colonization by an ice nucleation active bacterium, Erwinia (Pantoea) ananas reduces the cold hardiness of mulberry pyralid larvae. Cryobiology 1999; 38:281–289 [View Article] [PubMed]
    [Google Scholar]
  10. Watanabe K, Kawakita H, Sato M. Epiphytic bacterium, Erwinia ananas, commonly isolated from rice plants and brown planthoppers (Nilaparvata lugens) in hopperburn patches. Appl entomol Zool 1996; 31:459–462 [View Article]
    [Google Scholar]
  11. Bell AA, Medrano EG, López JD, Luff R. n.d. Transmission and importance of Pantoea ananatis during feeding on cotton buds (Gossypium hirsutum L.) by cotton fleahoppers (Pseudatomoscelis seriatus reuter). world cotton research conference-42007.
  12. Gitaitis RD, Walcott RR, Wells ML, Perez JCD, Sanders FH. Transmission of Pantoea ananatis, causal agent of center rot of onion, by tobacco thrips, Frankliniella fusca. Plant Dis 2003; 87:675–678 [View Article]
    [Google Scholar]
  13. Krawczyk K, Foryś J, Nakonieczny M, Tarnawska M, Bereś PK. Transmission of Pantoea ananatis, the causal agent of leaf spot disease of maize (Zea mays), by western corn rootworm (Diabrotica virgifera virgifera LeConte). Crop Protection 2021; 141:105431 [View Article]
    [Google Scholar]
  14. Acevedo FE, Peiffer M, Tan C-W, Stanley BA, Stanley A et al. Fall armyworm-associated gut bacteria modulate plant defense responses. Mol Plant Microbe Interact 2017; 30:127–137 [View Article]
    [Google Scholar]
  15. Dutta B, Barman AK, Srinivasan R, Avci U, Ullman DE et al. Transmission of Pantoea ananatis and P. agglomerans, causal agents of center rot of onion (Allium cepa), by onion thrips (Thrips tabaci) through feces. Phytopathology 2014; 104:812–819 [View Article] [PubMed]
    [Google Scholar]
  16. Dutta B, Gitaitis R, Barman A, Avci U, Marasigan K et al. Interactions between Frankliniella fusca and Pantoea ananatis in the center rot epidemic of onion (Allium cepa). Phytopathology 2016; 106:956–962 [View Article]
    [Google Scholar]
  17. Yan H, Yu SH, Xie GL, Fang W, Su T et al. Grain discoloration of rice caused by Pantoea ananatis (synonym Erwinia uredovora) in China. Plant Dis 2010; 94:482 [View Article]
    [Google Scholar]
  18. Lu L, Chang M, Han X, Wang Q, Wang J et al. Beneficial effects of endophytic Pantoea ananatis with ability to promote rice growth under saline stress. J Appl Microbiol 2021; 131:1919–1931 [View Article] [PubMed]
    [Google Scholar]
  19. Xue Y, Hu M, Chen S, Hu A, Li S et al. Enterobacter asburiae and Pantoea ananatis causing rice bacterial blight in China. Plant Dis 2021; 105:2078–2088
    [Google Scholar]
  20. Mondal KK, Mani C, Singh J, Kim JG, Mudgett MB. A new leaf blight of rice caused by Pantoea ananatis in India. Plant Dis 2011; 95:1582 [View Article]
    [Google Scholar]
  21. Wu L, Liu R, Niu Y, Lin H, Ye W et al. Whole genome sequence of Pantoea ananatis R100, an antagonistic bacterium isolated from rice seed. J Biotechnol 2016; 225:1–2 [View Article]
    [Google Scholar]
  22. Kini K, Lefeuvre P, Poulin L, Silué D, Koebnik R. Genome resources of three West African strains of Pantoea ananatis causing bacterial blight and grain discoloration of rice. Phytopathology 2020; 110:1500–1502 [View Article]
    [Google Scholar]
  23. Ma J, Zhang K, Huang M, Hector SB, Liu B et al. Involvement of Fenton chemistry in rice straw degradation by the lignocellulolytic bacterium Pantoea ananatis Sd-1. Biotechnol Biofuels 2016; 9:211 [View Article]
    [Google Scholar]
  24. Nault LR. Transmission biology, vector specificity and evolution of planthopper-transmitted plant viruses. In Denno RF, Perfect TJ. eds Planthoppers: Their Ecology and Management Boston, MA: Springer US; 1994 pp 429–448 [View Article]
    [Google Scholar]
  25. Bing XL, Zhao DS, Peng CW, Huang HJ, Hong XY. Similarities and spatial variations of bacterial and fungal communities in field rice planthopper (Hemiptera: Delphacidae) populations. Insect Sci 2020; 27:947–963 [View Article]
    [Google Scholar]
  26. De Maayer P, Chan WY, Rubagotti E, Venter SN, Toth IK et al. Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts. BMC Genomics 2014; 15:404 [View Article]
    [Google Scholar]
  27. Sheibani-Tezerji R, Naveed M, Jehl M-A, Sessitsch A, Rattei T et al. The genomes of closely related Pantoea ananatis maize seed endophytes having different effects on the host plant differ in secretion system genes and mobile genetic elements. Front Microbiol 2015; 6:440 [View Article]
    [Google Scholar]
  28. Stice SP, Stumpf SD, Gitaitis RD, Kvitko BH, Dutta B. Pantoea ananatis genetic diversity analysis reveals limited genomic diversity as well as accessory genes correlated with onion pathogenicity. Front Microbiol 2018; 9:184 [View Article]
    [Google Scholar]
  29. Bing X-L, Winkler J, Gerlach J, Loeb G, Buchon N. Identification of natural pathogens from wild Drosophila suzukii. Pest Manag Sci 2021; 77:1594–1606 [View Article] [PubMed]
    [Google Scholar]
  30. Li TP, Zhou CY, Zha SS, Gong JT, Xi Z et al. Stable establishment of Cardinium spp. in the brown planthopper Nilaparvata lugens despite decreased host fitness. Appl Environ Microbiol 2020; 86:e02509–02519 [View Article]
    [Google Scholar]
  31. Cole JR, Wang Q, Cardenas E, Fish J, Chai B et al. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009; 37:D141–5 [View Article]
    [Google Scholar]
  32. Zhao DX, Zhang XF, Chen DS, Zhang YK, Hong XY. Wolbachia-host interactions: host mating patterns affect Wolbachia density dynamics. PLoS ONE 2013; 8:e66373 [View Article]
    [Google Scholar]
  33. Bing X-L, Xia W-Q, Gui J-D, Yan G-H, Wang X-W et al. Diversity and evolution of the Wolbachia endosymbionts of Bemisia (Hemiptera: Aleyrodidae) whiteflies. Ecol Evol 2014; 4:2714–2737 [View Article] [PubMed]
    [Google Scholar]
  34. Braig HR, Zhou W, Dobson SL, O’Neill SL. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol 1998; 180:2373–2378 [View Article] [PubMed]
    [Google Scholar]
  35. R Team C R: a language and environment for statistical computing; 2022 http://www.R-project.org/
  36. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article] [PubMed]
    [Google Scholar]
  37. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP et al. A whole-genome assembly of Drosophila. Science 2000; 287:2196–2204 [View Article] [PubMed]
    [Google Scholar]
  38. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20:1297–1303 [View Article]
    [Google Scholar]
  39. Li R, Yu C, Li Y, Lam T-W, Yiu S-M et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 2009; 25:1966–1967 [View Article] [PubMed]
    [Google Scholar]
  40. Li R, Li Y, Fang X, Yang H, Wang J et al. SNP detection for massively parallel whole-genome resequencing. Genome Res 2009; 19:1124–1132 [View Article] [PubMed]
    [Google Scholar]
  41. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article] [PubMed]
    [Google Scholar]
  42. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  43. Shen W, Le S, Li Y, Hu F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 2016; 11:e0163962 [View Article]
    [Google Scholar]
  44. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 2021; 38:5825–5829 [View Article]
    [Google Scholar]
  45. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article]
    [Google Scholar]
  46. Leimbach A. Bac-genomics-scripts: bovine E. coli mastitis comparative genomics edition. Zenodo 2016
    [Google Scholar]
  47. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011; 8:785–786 [View Article]
    [Google Scholar]
  48. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001; 305:567–580 [View Article] [PubMed]
    [Google Scholar]
  49. Eichinger V, Nussbaumer T, Platzer A, Jehl M-A, Arnold R et al. EffectiveDB--updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems. Nucleic Acids Res 2016; 44:D669–74 [View Article] [PubMed]
    [Google Scholar]
  50. Kirzinger MWB, Butz CJ, Stavrinides J. Inheritance of Pantoea type III secretion systems through both vertical and horizontal transfer. Mol Genet Genomics 2015; 290:2075–2088 [View Article] [PubMed]
    [Google Scholar]
  51. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–6 [View Article] [PubMed]
    [Google Scholar]
  52. Akhter S, Aziz RK, Edwards RA. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res 2012; 40:e126 [View Article]
    [Google Scholar]
  53. Tambong JT. Taxogenomics and Systematics of the Genus Pantoea. Front Microbiol 2019; 10:2463 [View Article]
    [Google Scholar]
  54. Tambong JT, Xu R, Kaneza CA, Nshogozabahizi JC. An in-depth analysis of a multilocus phylogeny identifies leuS as a reliable phylogenetic marker for the genus Pantoea. Evol Bioinform Online 2014; 10:115–125 [View Article]
    [Google Scholar]
  55. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article] [PubMed]
    [Google Scholar]
  56. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J et al. GenBank. Nucleic Acids Res 2018; 46:D41–D47 [View Article] [PubMed]
    [Google Scholar]
  57. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  58. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  59. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  60. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  61. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 2015; 16:157 [View Article]
    [Google Scholar]
  62. Yu G, Smith DK, Zhu H, Guan Y, Lam TY. Ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 2017; 8:28–36
    [Google Scholar]
  63. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 2014; 10:e1003537 [View Article]
    [Google Scholar]
  64. Bouckaert RR, Drummond AJ. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol Biol 2017; 17:42 [View Article]
    [Google Scholar]
  65. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004; 5:R12 [View Article]
    [Google Scholar]
  66. Chen C, Chen H, Zhang Y, Thomas HR, Frank MH et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 2020; 13:1194–1202 [View Article]
    [Google Scholar]
  67. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  68. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015; 12:59–60 [View Article] [PubMed]
    [Google Scholar]
  69. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 2017; 33:2938–2940 [View Article] [PubMed]
    [Google Scholar]
  70. Simpson GL, Solymos P, Stevens M, Wagner H. Vegan: community ecology package. Time International 2010
    [Google Scholar]
  71. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article]
    [Google Scholar]
  72. Shalom G, Shaw JG, Thomas MS. In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiol 2007; 153:2689–2699 [View Article]
    [Google Scholar]
  73. Guy L, Kultima JR, Andersson SGE. genoPlotR: comparative gene and genome visualization in R. Bioinformatics 2010; 26:2334–2335 [View Article] [PubMed]
    [Google Scholar]
  74. Bing X-L, Zhao D-S, Hong X-Y. Bacterial reproductive manipulators in rice planthoppers. Arch Insect Biochem Physiol 2019; 101:e21548 [View Article]
    [Google Scholar]
  75. Otero-Bravo A, Goffredi S, Sabree ZL. Cladogenesis and genomic streamlining in extracellular endosymbionts of tropical stink bugs. Genome Biol Evol 2018; 10:680–693 [View Article]
    [Google Scholar]
  76. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  77. Bing XL, Zhao DS, Sun JT, Zhang KJ, Hong XY. Genomic analysis of Wolbachia from Laodelphax striatellus (Delphacidae, Hemiptera) reveals insights into its “Jekyll and Hyde” mode of infection pattern. Genome Biol Evol 2020; 12:3818–3831 [View Article]
    [Google Scholar]
  78. Mu X-Q, Bullitt E. Structure and assembly of P-pili: a protruding hinge region used for assembly of a bacterial adhesion filament. Proc Natl Acad Sci 2006; 103:9861–9866 [View Article]
    [Google Scholar]
  79. Medrano EG, Bell AA. Genome sequence of Pantoea ananatis strain CFH 7-1, which is associated with a vector-borne cotton fruit disease. Genome Announc 2015; 3:e01029–01015 [View Article]
    [Google Scholar]
  80. Duchêne S, Holt KE, Weill F-X, Le Hello S, Hawkey J et al. Genome-scale rates of evolutionary change in bacteria. Microb Genom 2016; 2:e000094 [View Article] [PubMed]
    [Google Scholar]
  81. Shyntum DY, Theron J, Venter SN, Moleleki LN, Toth IK et al. Pantoea ananatis utilizes a type VI secretion system for pathogenesis and bacterial competition. Mol Plant Microbe Interact 2015; 28:420–431 [View Article]
    [Google Scholar]
  82. Shyntum DY, Venter SN, Moleleki LN, Toth I, Coutinho TA. Comparative genomics of type VI secretion systems in strains of Pantoea ananatis from different environments. BMC Genomics 2014; 15:163 [View Article]
    [Google Scholar]
  83. Zhang J, Huang Y, Huang X, Jiang M. Infection state of Pantoea agglomerans in the rice water weevil Lissorhoptrus oryzophilus (Coleoptera: Curculionidae). Appl Entomol Zool 2016; 51:561–569 [View Article]
    [Google Scholar]
  84. Kenyon LJ, Meulia T, Sabree ZL. Habitat visualization and genomic analysis of “Candidatus Pantoea carbekii,” the primary symbiont of the brown marmorated stink bug. Genome Biol Evol 2015; 7:620–635 [View Article] [PubMed]
    [Google Scholar]
  85. McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 2011; 10:13–26 [View Article]
    [Google Scholar]
  86. Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev 2014; 38:865–891 [View Article] [PubMed]
    [Google Scholar]
  87. Tanaka KH, Frenette M, Charette SJ. IS-mediated loss of virulence by Aeromonas salmonicida. Mob Genet Elements 2013; 3:e23498
    [Google Scholar]
  88. Azegami K. Suppressive effect of bacteriophage on bacterial palea browning of rice caused by Pantoea ananatis. J Gen Plant Pathol 2013; 79:145–154 [View Article]
    [Google Scholar]
  89. Correa VR, Majerczak DR, Ammar E-D, Merighi M, Pratt RC et al. The bacterium Pantoea stewartii uses two different type III secretion systems to colonize its plant host and insect vector. Appl Environ Microbiol 2012; 78:6327–6336 [View Article] [PubMed]
    [Google Scholar]
  90. Coulthurst S. The Type VI secretion system: a versatile bacterial weapon. Microbiology 2019; 165:503–515 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000907
Loading
/content/journal/mgen/10.1099/mgen.0.000907
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Supplementary material 3

EXCEL

Supplementary material 4

EXCEL

Supplementary material 5

EXCEL

Supplementary material 6

EXCEL

Supplementary material 7

EXCEL

Supplementary material 8

EXCEL

Supplementary material 9

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error