1887

Abstract

The species contains a diverse set of sequence types and there remain important questions regarding differences in genetic content within this population that need to be addressed. Pangenomes are useful vehicles for studying gene content within sequence types. Here, we analyse 21 sequence type pangenomes using comparative pangenomics to identify variance in both pangenome structure and content. We present functional breakdowns of sequence type core genomes and identify sequence types that are enriched in metabolism, transcription and cell membrane biogenesis genes. We also uncover metabolism genes that have variable core classification, depending on which allele is present. Our comparative pangenomics approach allows for detailed exploration of sequence type pangenomes within the context of the species. We show that ongoing gene gain and loss in the pangenome is sequence type-specific, which may be a consequence of distinct sequence type-specific evolutionary drivers.

Funding
This study was supported by the:
  • Wellcome Trust (Award 108876B15Z)
    • Principle Award Recipient: ElizabethA. Cummins
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000903
2022-11-23
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/11/mgen000903.html?itemId=/content/journal/mgen/10.1099/mgen.0.000903&mimeType=html&fmt=ahah

References

  1. Cummins EA, Hall RJ, Connor C, McInerney JO, McNally A. Distinct evolutionary trajectories in the escherichia coli pangenome occur within sequence types FigShare 2022 [View Article]
    [Google Scholar]
  2. Beghain J, Bridier-Nahmias A, Le Nagard H, Denamur E, Clermont O. ClermonTyping: an easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb Genom 2018; 4:1–8 [View Article] [PubMed]
    [Google Scholar]
  3. Tenaillon O, Skurnik D, Picard B, Denamur E. The population genetics of commensal Escherichia coli. Nat Rev Microbiol 2010; 8:207–217 [View Article] [PubMed]
    [Google Scholar]
  4. Dale AP, Woodford N. Extra-intestinal Pathogenic Escherichia coli (ExPEC): disease, carriage and clones. J Infect 2015; 71:615–626 [View Article]
    [Google Scholar]
  5. Denamur E, Clermont O, Bonacorsi S, Gordon D. The population genetics of pathogenic Escherichia coli. Nat Rev Microbiol 2021; 19:37–54 [View Article]
    [Google Scholar]
  6. Clermont O, Condamine B, Dion S, Gordon DM, Denamur E. The E phylogroup of Escherichia coli is highly diverse and mimics the whole E. coli species population structure. Environ Microbiol 2021; 23:7139–7151 [View Article]
    [Google Scholar]
  7. Clermont O, Dixit OVA, Vangchhia B, Condamine B, Dion S et al. Characterization and rapid identification of phylogroup G in Escherichia coli, a lineage with high virulence and antibiotic resistance potential. Environ Microbiol 2019; 21:3107–3117 [View Article] [PubMed]
    [Google Scholar]
  8. Wirth T, Falush D, Lan R, Colles F, Mensa P et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 2006; 60:1136–1151 [View Article] [PubMed]
    [Google Scholar]
  9. Jaureguy F, Landraud L, Passet V, Diancourt L, Frapy E et al. Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains. BMC Genomics 2008; 9:1–14 [View Article] [PubMed]
    [Google Scholar]
  10. Petty NK, Ben Zakour NL, Stanton-Cook M, Skippington E, Totsika M et al. Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci 2014; 111:5694–5699 [View Article]
    [Google Scholar]
  11. Stoesser N, Sheppard AE, Pankhurst L, De Maio N, Moore CE et al. Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. mBio 2016; 7:e02162 [View Article]
    [Google Scholar]
  12. Pitout JDD, DeVinney R. Escherichia coli ST131: a multidrug-resistant clone primed for global domination. F1000Res 2017; 6:1–7 [View Article]
    [Google Scholar]
  13. Matamoros S, van Hattem JM, Arcilla MS, Willemse N, Melles DC et al. Global phylogenetic analysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bacterial diversity but plasmid restriction. Sci Rep 2017; 7:1–9 [View Article] [PubMed]
    [Google Scholar]
  14. Oteo J, Diestra K, Juan C, Bautista V, Novais A et al. Extended-spectrum beta-lactamase-producing Escherichia coli in Spain belong to a large variety of multilocus sequence typing types, including ST10 complex/A, ST23 complex/A and ST131/B2. Int J Antimicrob Agents 2009; 34:173–176 [View Article]
    [Google Scholar]
  15. Dallman TJ, Greig DR, Gharbia SE, Jenkins C. Phylogenetic structure of Shiga toxin-producing Escherichia coli O157:H7 from sub-lineage to SNPs. Microb Genom 2021; 7: [View Article] [PubMed]
    [Google Scholar]
  16. Gordienko EN, Kazanov MD, Gelfand MS. Evolution of pan-genomes of Escherichia coli, Shigella spp., and Salmonella enterica. J Bacteriol 2013; 195:2786–2792 [View Article] [PubMed]
    [Google Scholar]
  17. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome.”. Proc Natl Acad Sci 2005; 102:13950–13955 [View Article]
    [Google Scholar]
  18. Brockhurst MA, Harrison E, Hall JPJ, Richards T, McNally A et al. The ecology and evolution of pangenomes. Curr Biol 2019; 29:R1094–R1103 [View Article]
    [Google Scholar]
  19. Rasko DA, Rosovitz MJ, Myers GSA, Mongodin EF, Fricke WF et al. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 2008; 190:6881–6893 [View Article]
    [Google Scholar]
  20. Hall RJ, Whelan FJ, Cummins EA, Connor C, McNally A et al. Gene-gene relationships in an Escherichia coli accessory genome are linked to function and mobility. Microb Genom 2021; 7: [View Article] [PubMed]
    [Google Scholar]
  21. Horesh G, Taylor-Brown A, McGimpsey S, Lassalle F, Corander J et al. Different evolutionary trends form the twilight zone of the bacterial pan-genome. Microb Genom 2021; 7: [View Article] [PubMed]
    [Google Scholar]
  22. Horesh G, Blackwell GA, Tonkin-Hill G, Corander J, Heinz E et al. A comprehensive and high-quality collection of Escherichia coli genomes and their genes. Microb Genom 2021; 7:1–15 [View Article] [PubMed]
    [Google Scholar]
  23. Whelan FJ, Hall RJ, McInerney JO. Evidence for selection in the abundant accessory gene content of a prokaryote pangenome. Mol Biol Evol 2021; 38:3697–3708 [View Article]
    [Google Scholar]
  24. Domingo-Sananes MR, McInerney JO. Mechanisms that shape microbial pangenomes. Trends Microbiol 2021; 29:493–503 [View Article]
    [Google Scholar]
  25. Sheppard SK, Guttman DS, Fitzgerald JR. Population genomics of bacterial host adaptation. Nat Rev Genet 2018; 19:549–565 [View Article] [PubMed]
    [Google Scholar]
  26. Liao J, Guo X, Weller DL, Pollak S, Buckley DH et al. Nationwide genomic atlas of soil-dwelling Listeria reveals effects of selection and population ecology on pangenome evolution. Nat Microbiol 2021; 6:1021–1030 [View Article]
    [Google Scholar]
  27. McNally A, Kallonen T, Connor C, Abudahab K, Aanensen DM et al. Diversification of colonization factors in a multidrug-resistant Escherichia coli lineage evolving under negative frequency-dependent selection. mBio 2019; 10:1–19 [View Article]
    [Google Scholar]
  28. Zong Z, Fenn S, Connor C, Feng Y, McNally A. Complete genomic characterization of two Escherichia coli lineages responsible for a cluster of carbapenem-resistant infections in a Chinese hospital. J Antimicrob Chemother 2018; 73:2340–2346 [View Article] [PubMed]
    [Google Scholar]
  29. Feng Y, Liu L, Lin J, Ma K, Long H et al. Key evolutionary events in the emergence of a globally disseminated, carbapenem resistant clone in the Escherichia coli ST410 lineage. Commun Biol 2019; 2:322 [View Article] [PubMed]
    [Google Scholar]
  30. Cummins EA, Snaith AE, McNally A, Hall RJ. The role of potentiating mutations in the evolution of pandemic Escherichia coli clones. Eur J Clin Microbiol Infect Dis 2021 [View Article]
    [Google Scholar]
  31. McNally A, Oren Y, Kelly D, Pascoe B, Dunn S et al. Combined analysis of variation in core, accessory and regulatory genome regions provides a super-resolution view into the evolution of bacterial populations. PLoS Genet 2016; 12:1–16 [View Article]
    [Google Scholar]
  32. Decano AG, Downing T. An Escherichia coli ST131 pangenome atlas reveals population structure and evolution across 4,071 isolates. Sci Rep 2019; 9:1–13 [View Article]
    [Google Scholar]
  33. Zhou Z, Alikhan NF, Mohamed K, Fan Y, Achtman M. The enterobase user’s guide, with case studies on salmonella transmissions, yersinia pestis phylogeny, and escherichia core genomic diversity. Genome Res 2020; 30:138–152
    [Google Scholar]
  34. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016; 17:1–14 [View Article] [PubMed]
    [Google Scholar]
  35. Jolley KA, Maiden MCJ. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595 [View Article]
    [Google Scholar]
  36. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  37. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol 2020; 21:1–21 [View Article]
    [Google Scholar]
  38. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000; 28:33–36 [View Article]
    [Google Scholar]
  39. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 2017; 34:2115–2122 [View Article]
    [Google Scholar]
  40. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article]
    [Google Scholar]
  41. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015; 12:59–60 [View Article] [PubMed]
    [Google Scholar]
  42. Jones P, Binns D, Chang HY, Fraser M, Li W et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 2014; 30:1236–1240 [View Article]
    [Google Scholar]
  43. Blum M, Chang H-Y, Chuguransky S, Grego T, Kandasaamy S et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 2021; 49:D344–D354 [View Article] [PubMed]
    [Google Scholar]
  44. Machado D, Andrejev S, Tramontano M, Patil KR. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res 2018; 46:7542–7553 [View Article] [PubMed]
    [Google Scholar]
  45. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR. COBRApy: COnstraints-Based Reconstruction and Analysis for python. BMC Syst Biol 2013; 7:74 [View Article]
    [Google Scholar]
  46. King ZA, Lu J, Dräger A, Miller P, Federowicz S et al. BiGG Models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res 2016; 44:D515–22 [View Article]
    [Google Scholar]
  47. Chattopadhyay S, Weissman SJ, Minin VN, Russo TA, Dykhuizen DE et al. High frequency of hotspot mutations in core genes of Escherichia coli due to short-term positive selection. Proc Natl Acad Sci U S A 2009; 106:12412–12417 [View Article] [PubMed]
    [Google Scholar]
  48. Lukjancenko O, Wassenaar TM, Ussery DW. Comparison of 61 sequenced Escherichia coli genomes. Microb Ecol 2010; 60:708–720 [View Article] [PubMed]
    [Google Scholar]
  49. Kaas RS, Friis C, Ussery DW, Aarestrup FM. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC Genomics 2012; 13:577 [View Article]
    [Google Scholar]
  50. Saris PEJ, Palva ET. Regulation of manX (ptsL) and manY (pel) genes required for mannose transport and penetration of λDNA in Escherichia coli K12. FEMS Microbiology Letters 1987; 44:377–382 [View Article]
    [Google Scholar]
  51. Wehmeier UF, Nobelmann B, Lengeler JW. Cloning of the Escherichia coli sor genes for L-sorbose transport and metabolism and physical mapping of the genes near metH and iclR. J Bacteriol 1992; 174:7784–7790 [View Article] [PubMed]
    [Google Scholar]
  52. Boos W, Shuman H. Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol Mol Biol Rev 1998; 62:204–229 [View Article] [PubMed]
    [Google Scholar]
  53. Nobelmann B, Lengeler JW. Sequence of the gat operon for galactitol utilization from a wild-type strain EC3132 of Escherichia coli. Biochim Biophys Acta 1995; 1262:69–72 [View Article]
    [Google Scholar]
  54. Sampaio M-M, Chevance F, Dippel R, Eppler T, Schlegel A et al. Phosphotransferase-mediated transport of the osmolyte 2-O-alpha-mannosyl-D-glycerate in Escherichia coli occurs by the product of the mngA (hrsA) gene and is regulated by the mngR (farR) gene product acting as repressor. J Biol Chem 2004; 279:5537–5548 [View Article] [PubMed]
    [Google Scholar]
  55. Liu JY, Miller PF, Willard J, Olson ER. Functional and biochemical characterization of Escherichia coli sugar efflux transporters. J Biol Chem 1999; 274:22977–22984 [View Article] [PubMed]
    [Google Scholar]
  56. Saier MH, Reizer J. Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Bacteriol 1992; 174:1433–1438 [View Article] [PubMed]
    [Google Scholar]
  57. Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2006; 70:939–1031 [View Article] [PubMed]
    [Google Scholar]
  58. Xu Y, Zhou NY. MhpA Is a hydroxylase catalyzing the initial reaction of 3-(3-hydroxyphenyl)propionate catabolism in Escherichia coli K-12. Appl Environ Microbiol 2020; 86:e02385-19 [View Article]
    [Google Scholar]
  59. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28:27–30 [View Article] [PubMed]
    [Google Scholar]
  60. Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci 2019; 28:1947–1951 [View Article] [PubMed]
    [Google Scholar]
  61. Okuyama M, Mori H, Chiba S, Kimura A. Overexpression and characterization of two unknown proteins, YicI and YihQ, originated from Escherichia coli. Protein Expr Purif 2004; 37:170–179 [View Article] [PubMed]
    [Google Scholar]
  62. Bateman A, Martin MJ, Orchard S, Magrane M, Agivetova R et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 2021; 49:D480–D489 [View Article] [PubMed]
    [Google Scholar]
  63. Ferguson AD, Hofmann E, Coulton JW, Diederichs K, Welte W. Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 1998; 282:2215–2220 [View Article] [PubMed]
    [Google Scholar]
  64. Bobik TA, Havemann GD, Busch RJ, Williams DS, Aldrich HC. The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B(12)-dependent 1, 2-propanediol degradation. J Bacteriol 1999; 181:5967–5975 [View Article] [PubMed]
    [Google Scholar]
  65. Makui H, Roig E, Cole ST, Helmann JD, Gros P et al. Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol Microbiol 2000; 35:1065–1078 [View Article] [PubMed]
    [Google Scholar]
  66. Waterson RM, Conway RS. Enoyl-CoA hydratases from Clostridium acetobutylicum and Escherichia coli. Methods Enzymol 1981; 71 Pt C:421–430 [View Article]
    [Google Scholar]
  67. McNally A, Thomson NR, Reuter S, Wren BW. “Add, stir and reduce”: Yersinia spp. as model bacteria for pathogen evolution. Nat Rev Microbiol 2016; 14:177–190 [View Article] [PubMed]
    [Google Scholar]
  68. Chaudhuri RR, Henderson IR. The evolution of the Escherichia coli phylogeny. Infect Genet Evol 2012; 12:214–226 [View Article] [PubMed]
    [Google Scholar]
  69. Hastak P, Cummins ML, Gottlieb T, Cheong E, Merlino J et al. Genomic profiling of Escherichia coli isolates from bacteraemia patients: a 3-year cohort study of isolates collected at a Sydney teaching hospital. Microb Genom 2020; 6:1–16 [View Article]
    [Google Scholar]
  70. Viladomiu M, Metz ML, Lima SF, Jin W-B, Chou L et al. Adherent-invasive E. coli metabolism of propanediol in Crohn’s disease regulates phagocytes to drive intestinal inflammation. Cell Host Microbe 2021; 29:607–619 [View Article]
    [Google Scholar]
  71. Abram K, Udaondo Z, Bleker C, Wanchai V, Wassenaar TM et al. Mash-based analyses of Escherichia coli genomes reveal 14 distinct phylogroups. Commun Biol 2021; 4:117 [View Article]
    [Google Scholar]
  72. Maistrenko OM, Mende DR, Luetge M, Hildebrand F, Schmidt TSB et al. Disentangling the impact of environmental and phylogenetic constraints on prokaryotic within-species diversity. ISME J 2020; 14:1247–1259 [View Article] [PubMed]
    [Google Scholar]
  73. Cummins EA, Hall RJ, McInerney JO, McNally A. Prokaryote pangenomes are dynamic entities. Curr Opin Microbiol 2022; 66:73–78 [View Article] [PubMed]
    [Google Scholar]
  74. Gori A, Harrison OB, Mlia E, Nishihara Y, Chan JM et al. Pan-GWAS of Streptococcus agalactiae highlights lineage-specific genes associated with virulence and niche adaptation. mBio 2020; 11:e00728-20 [View Article]
    [Google Scholar]
  75. Letunic I, Bork P, Gmbh BS. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.000903
Loading
/content/journal/mgen/10.1099/mgen.0.000903
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error