1887

Abstract

The use of whole metagenomic data to infer the relative abundance of all its microbes is well established. The same data can be used to determine the replication rate of all eubacterial taxa with circular chromosomes. Despite their availability, the replication rate profiles (metareplicome) have not been fully exploited in microbiome analyses. Another relatively new approach is the application of causal inferencing to analyse microbiome data that goes beyond correlational studies. A novel scalable pipeline called MeRRCI (Metagenome, metaResistome, and metaReplicome for Causal Inferencing) was developed. MeRRCI combines efficient computation of the metagenome (bacterial relative abundance), metaresistome (antimicrobial gene abundance) and metareplicome (replication rates), and integrates environmental variables (metadata) for causality analysis using Bayesian networks. MeRRCI was applied to an infant gut microbiome data set to investigate the microbial community’s response to antibiotics. Our analysis suggests that the current treatment stratagem contributes to preterm infant gut dysbiosis, allowing a proliferation of pathobionts. The study highlights the specific antibacterial resistance genes that may contribute to exponential cell division in the presence of antibiotics for various pathogens, namely and . These organisms often contribute to the harmful long-term sequelae seen in these young infants.

Funding
This study was supported by the:
  • National Institute of Health (Award 1R15AI128714-01)
    • Principle Award Recipient: GiriNarasimhan
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000899
2022-12-20
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/12/mgen000899.html?itemId=/content/journal/mgen/10.1099/mgen.0.000899&mimeType=html&fmt=ahah

References

  1. Woolhouse M, Waugh C, Perry MR, Nair H. Global disease burden due to antibiotic resistance - state of the evidence. J Glob Health 2016; 6:010306 [View Article]
    [Google Scholar]
  2. CDC antibiotic resistance threats in the United States Atlanta, GA: U.S. Dept. of Health and Human Services; 2019
    [Google Scholar]
  3. Furuya EY, Lowy FD. Antimicrobial-resistant bacteria in the community setting. Nat Rev Microbiol 2006; 4:36–45 [View Article]
    [Google Scholar]
  4. Wlodarska M, Willing B, Keeney KM, Menendez A, Bergstrom KS et al. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect Immun 2011; 79:1536–1545 [View Article]
    [Google Scholar]
  5. Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 2012; 488:621–626 [View Article]
    [Google Scholar]
  6. Molander CW, Kagan BM, Weinberger HJ, Heimlich EM, Busser RJ. Induction by antibiotics and comparative sensitivity of L-phase variants of Staphylococcus aureus. J Bacteriol 1964; 88:591–594 [View Article]
    [Google Scholar]
  7. Tomasz A. The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol 1979; 33:113–137 [View Article] [PubMed]
    [Google Scholar]
  8. Donowitz GR, Mandell GL. Beta-Lactam antibiotics (1). N Engl J Med 1988; 318:419–426 [View Article] [PubMed]
    [Google Scholar]
  9. Marrec L, Bitbol AF. Resist or perish: fate of a microbial population subjected to a periodic presence of antimicrobial. PLOS Comput Biol 2020; 16:e1007798 [View Article]
    [Google Scholar]
  10. Cozens RM, Tuomanen E, Tosch W, Zak O, Suter J et al. Evaluation of the bactericidal activity of beta-lactam antibiotics on slowly growing bacteria cultured in the chemostat. Antimicrob Agents Chemother 1986; 29:797–802 [View Article] [PubMed]
    [Google Scholar]
  11. Bush K. Past and present perspectives on β-Lactamases. Antimicrob Agents Chemother 2018; 62:e01076-18 [View Article]
    [Google Scholar]
  12. Engberg B, Nordström K. Replication of R-factor R1 in Scherichia coli K-12 at different growth rates. J Bacteriol 1975; 123:179–186 [View Article] [PubMed]
    [Google Scholar]
  13. Slager J, Kjos M, Attaiech L, Veening JW. Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin. Cell 2014; 157:395–406 [View Article]
    [Google Scholar]
  14. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 2012; 9:811–814 [View Article]
    [Google Scholar]
  15. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 2014; 15:R46 [View Article]
    [Google Scholar]
  16. Korem T, Zeevi D, Suez J, Weinberger A, Avnit-Sagi T et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science 2015; 349:1101–1106 [View Article] [PubMed]
    [Google Scholar]
  17. Messer W. The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. FEMS Microbiol Rev 2002; 26:355–374 [View Article]
    [Google Scholar]
  18. Hendrickson H, Lawrence JG. Mutational bias suggests that replication termination occurs near the dif site, not at ter sites: replication termination occurs near the dif site. Mol Microbiol 2007; 64(1):42–56
    [Google Scholar]
  19. Bremer H, Churchward G. An examination of the Cooper-Helmstetter theory of DNA replication in bacteria and its underlying assumptions. J Theor Biol 1977; 69:645–654 [View Article]
    [Google Scholar]
  20. Brown CT, Olm MR, Thomas BC, Banfield JF. Measurement of bacterial replication rates in microbial communities. Nat Biotechnol 2016; 34:1256–1263 [View Article]
    [Google Scholar]
  21. Gao Y, Li H. Quantifying and comparing bacterial growth dynamics in multiple metagenomic samples. Nat Methods 2018; 15:1041–1044 [View Article]
    [Google Scholar]
  22. Olm MR, Brown CT, Brooks B, Firek B, Baker R et al. Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates. Genome Res 2017; 27:601–612 [View Article]
    [Google Scholar]
  23. Brown CT, Xiong W, Olm MR, Thomas BC, Baker R et al. Hospitalized premature infants are colonized by related bacterial strains with distinct proteomic profiles. mBio 2018; 9:e00441-18 [View Article]
    [Google Scholar]
  24. Koo H, Hakim JA, Crossman DK, Kumar R, Lefkowitz EJ et al. Individualized recovery of gut microbial strains post antibiotics. NPJ Biofilms Microbiomes 2019; 5:30 [View Article] [PubMed]
    [Google Scholar]
  25. Rahman SF, Olm MR, Morowitz MJ, Banfield JF. Machine learning leveraging genomes from metagenomes identifies influential antibiotic resistance genes in the infant gut microbiome. mSystems 2018; 3:e00123-17 [View Article]
    [Google Scholar]
  26. Emiola A, Oh J. High throughput in situ metagenomic measurement of bacterial replication at ultra-low sequencing coverage. Nat Commun 2018; 9:4956 [View Article]
    [Google Scholar]
  27. Emiola A, Zhou W, Oh J. Metagenomic growth rate inferences of strains in situ. Sci Adv 2020; 6:eaaz2299 [View Article]
    [Google Scholar]
  28. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol 2012; 8:e1002606 [View Article]
    [Google Scholar]
  29. Baumgartner M, Bayer F, Pfrunder-Cardozo KR, Buckling A, Hall AR. Resident microbial communities inhibit growth and antibiotic-resistance evolution of Escherichia coli in human gut microbiome samples. PLOS Biol 2020; 18:e3000465 [View Article]
    [Google Scholar]
  30. Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS et al. Communication among oral bacteria. Microbiol Mol Biol Rev 2002; 66:486–505 [View Article]
    [Google Scholar]
  31. Tsilimigras MCB, Fodor AA. Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Ann Epidemiol 2016; 26:330–335 [View Article]
    [Google Scholar]
  32. Arrieta MC, Walter J, Finlay BB. Human microbiota-associated mice: a model with challenges. Cell Host Microbe 2016; 19:575–578 [View Article]
    [Google Scholar]
  33. Walter J, Armet AM, Finlay BB, Shanahan F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 2020; 180:221–232 [View Article]
    [Google Scholar]
  34. Fischbach MA. Microbiome: focus on causation and mechanism. Cell 2018; 174:785–790 [View Article]
    [Google Scholar]
  35. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R et al. The human microbiome project. Nature 2007; 449:804–810 [View Article]
    [Google Scholar]
  36. Sazal M, Stebliankin V, Mathee K, Yoo C, Narasimhan G. Causal effects in microbiomes using interventional calculus. Sci Rep 2021; 11:5724 [View Article]
    [Google Scholar]
  37. Layeghifard M, Hwang DM, Guttman DS. Disentangling interactions in the microbiome: a network perspective. Trends Microbiol 2017; 25:217–228 [View Article]
    [Google Scholar]
  38. Brown MRW, Allison DG, Gilbert P. Resistance of bacterial biofilms to antibiotics: a growth-rate related effect?. J Antimicrob Chemother 1988; 22:777–780 [View Article] [PubMed]
    [Google Scholar]
  39. Anderl JN, Zahller J, Roe F, Stewart PS. Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 2003; 47:1251–1256 [View Article]
    [Google Scholar]
  40. Gibson MK, Wang B, Ahmadi S, Burnham CAD, Tarr PI et al. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nat Microbiol 2016; 1:16024 [View Article]
    [Google Scholar]
  41. Yoo AB, Jette MA, Grondona M. Slurm: simple linux utility for resource management. In In: Workshop on Job Scheduling Strategies for Parallel Processing Springer; 2003 pp 44–60
    [Google Scholar]
  42. Valdes C, Stebliankin V, Narasimhan G. Large scale microbiome profiling in the cloud. Bioinformatics 2019; 35:i13–i22 [View Article] [PubMed]
    [Google Scholar]
  43. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article]
    [Google Scholar]
  44. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article] [PubMed]
    [Google Scholar]
  45. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article]
    [Google Scholar]
  46. Pérez-Cobas AE, Gomez-Valero L, Buchrieser C. Metagenomic approaches in microbial ecology: an update on whole-genome and marker gene sequencing analyses. Microb Genom 2020; 6: [View Article]
    [Google Scholar]
  47. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article] [PubMed]
    [Google Scholar]
  48. Noyes NR, Yang X, Linke LM, Magnuson RJ, Cook SR et al. Characterization of the resistome in manure, soil and wastewater from dairy and beef production systems. Sci Rep 2016; 6:24645 [View Article]
    [Google Scholar]
  49. Zaheer R, Noyes N, Ortega Polo R, Cook SR, Marinier E et al. Impact of sequencing depth on the characterization of the microbiome and resistome. Sci Rep 2018; 8:5890 [View Article]
    [Google Scholar]
  50. Scutari M. Bayesian network constraint-based structure learning algorithms: parallel and optimized implementations in the bnlearn R package. J Stat Soft 2017; 77: [View Article]
    [Google Scholar]
  51. Pearl J. Causality: models, reasoning and inference Springer; 2000
    [Google Scholar]
  52. Colombo D, Maathuis MH. Order-independent constraint-based causal structure learning. J Mach Learn Res 2014
    [Google Scholar]
  53. Pearl J. Probabilistic reasoning in intelligent systems: networks of plausible inference New Delhi: Morgan Kaufmann; 2006
    [Google Scholar]
  54. Koller D, Friedman N. Probabilistic graphical models: principles and techniques Cambridge, MA: MIT Press; 2009 p 1231
    [Google Scholar]
  55. Shrier I, Platt RW. Reducing bias through directed acyclic graphs. BMC Med Res Methodol 2008; 8:70 [View Article]
    [Google Scholar]
  56. Pearl J. Graphs, causality, and structural equation models. Sociol Methods Res 1998; 27:226–284 [View Article]
    [Google Scholar]
  57. Geiger D, Verma T, Pearl J. d-separation: from theorems to algorithms. In In: Machine Intelligence and Pattern Recognition Elsevier; 1990 pp 139–148
    [Google Scholar]
  58. Glymour C, Zhang K, Spirtes P. Review of causal discovery methods based on graphical models. Front Genet 2019; 10:524 [View Article]
    [Google Scholar]
  59. Lugo-Martinez J, Ruiz-Perez D, Narasimhan G, Bar-Joseph Z. Dynamic interaction network inference from longitudinal microbiome data. Microbiome 2019; 7:54 [View Article]
    [Google Scholar]
  60. Ruiz-Perez D, Lugo-Martinez J, Bourguignon N, Mathee K, Lerner B et al. Dynamic bayesian networks for integrating multi-omics time series microbiome data. mSystems 2021; 6:e01105-20 [View Article]
    [Google Scholar]
  61. Fernandez M, Riveros JD, Campos M, Mathee K, Narasimhan G. Microbial “social networks.”. BMC Genomics 2015; 16 Suppl 11:S6 [View Article] [PubMed]
    [Google Scholar]
  62. Friedman N, Goldszmidt M, Wyner A. Data analysis with Bayesian Networks: a bootstrap approach; 2013
  63. Mann HB, Whitney DR. On a test of whether one of two random variables is stochastically larger than the other. Ann Math Statist 1947; 18:50–60 [View Article]
    [Google Scholar]
  64. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Series B 1995; 57:289–300 [View Article]
    [Google Scholar]
  65. Spearman C. The proof and measurement of association between two things. In Jenkins JJ, Paterson DG. eds Studies in Individual Differences: The Search for Intelligence East Norwalk: Appleton-Century-Crofts; 1961 pp 45–58
    [Google Scholar]
  66. R Core Team R: a language and environment for statistical computing. R Foundation for Statistical Computing [Internet]; 2020 https://www.R-project.org/
  67. Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 2001; 58:109–130 [View Article]
    [Google Scholar]
  68. Rohart F, Gautier B, Singh A, Lê Cao KA. mixOmics: an R package for 'omics feature selection and multiple data integration. PLOS Comput Biol 2017; 13:e1005752 [View Article]
    [Google Scholar]
  69. Instructional and Research Computing Center (IRCC). http://ircc.fiu.edu
  70. Ruiz-Perez D, Guan H, Madhivanan P, Mathee K, Narasimhan G. So you think you can PLS-DA?. BMC bioinformatics 2020; 21(S1):2 [View Article]
    [Google Scholar]
  71. Fevre C, Passet V, Weill F-X, Grimont PAD, Brisse S. Variants of the Klebsiella pneumoniae OKP chromosomal beta-lactamase are divided into two main groups, OKP-A and OKP-B. Antimicrob Agents Chemother 2005; 49:5149–5152 [View Article] [PubMed]
    [Google Scholar]
  72. Amazon.com Inc,. Amazon Web Services. Internet https://aws.amazon.com/
    [Google Scholar]
  73. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 2016; 44:D733–45 [View Article] [PubMed]
    [Google Scholar]
  74. Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife 2021; 10:e65088 [View Article]
    [Google Scholar]
  75. Gao Y, Li H. Quantifying and comparing bacterial growth dynamics in multiple metagenomic samples. Nat Methods 2018; 15:1041–1044 [View Article]
    [Google Scholar]
  76. Vieira-Silva S, Rocha EPC. The systemic imprint of growth and its uses in ecological (meta)genomics. PLoS Genet 2010; 6:e1000808 [View Article]
    [Google Scholar]
  77. Weissman JL, Hou S, Fuhrman JA. Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. Proc Natl Acad Sci 2021; 118:e2016810118 [View Article]
    [Google Scholar]
  78. Long AM, Hou S, Ignacio-Espinoza JC, Fuhrman JA. Benchmarking microbial growth rate predictions from metagenomes. ISME J 2021; 15:183–195 [View Article]
    [Google Scholar]
  79. Cooper GF, Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Mach Learn 1992; 9:309–347 [View Article]
    [Google Scholar]
  80. Sazal MR, Ruiz-Perez D, Cickovski T, Narasimhan G. Inferring relationships in microbiomes from signed Bayesian networks. In 2018 IEEE 8th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS) Las Vegas, NV: NV: IEEE; 2018 p 1 [View Article]
    [Google Scholar]
  81. Sazal M, Mathee K, Ruiz-Perez D, Cickovski T, Narasimhan G. Inferring directional relationships in microbial communities using signed Bayesian networks. BMC Genomics 2020; 21:663 [View Article]
    [Google Scholar]
  82. Kong KF, Schneper L, Mathee K. Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS 2010; 118:1–36 [View Article] [PubMed]
    [Google Scholar]
  83. Drusano GL, Lode H, Edwards JR. Meropenem: clinical response in relation to in vitro susceptibility. Clin Microbiol Infect 2000; 6:185–194 [View Article]
    [Google Scholar]
  84. Gilmore MS, Lebreton F, van Schaik W. Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Curr Opin Microbiol 2013; 16:10–16 [View Article]
    [Google Scholar]
  85. Jett BD, Huycke MM, Gilmore MS. Virulence of enterococci. Clin Microbiol Rev 1994; 7:462–478 [View Article] [PubMed]
    [Google Scholar]
  86. Dubin K, Pamer EG. Enterococci and their interactions with the intestinal microbiome. In Bugs as Drugs: Therapeutic Microbes for the Prevention and Treatment of Disease 2018 pp 309–330
    [Google Scholar]
  87. Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 2007; 1:56–66 [View Article]
    [Google Scholar]
  88. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci 2011; 108 Suppl 1:4554–4561 [View Article]
    [Google Scholar]
  89. Stevens V, Dumyati G, Fine LS, Fisher SG, van Wijngaarden E. Cumulative antibiotic exposures over time and the risk of Clostridium difficile infection. Clin Infect Dis 2011; 53:42–48 [View Article]
    [Google Scholar]
  90. Blaser MJ. Antibiotic use and its consequences for the normal microbiome. Science 2016; 352:544–545 [View Article]
    [Google Scholar]
  91. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y et al. Population-level analysis of gut microbiome variation. Science 2016; 352:560–564 [View Article]
    [Google Scholar]
  92. Weiss E, Zahar JR, Lesprit P, Ruppe E, Leone M et al. Elaboration of a consensual definition of de-escalation allowing a ranking of β-lactams. Clin Microbiol Infect 2015; 21:649 [View Article]
    [Google Scholar]
  93. Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci 2018; 115:E3463–E3470 [View Article]
    [Google Scholar]
  94. Vardakas KZ, Trigkidis KK, Boukouvala E, Falagas ME. Clostridium difficile infection following systemic antibiotic administration in randomised controlled trials: a systematic review and meta-analysis. Int J Antimicrob Agents 2016; 48:1–10 [View Article]
    [Google Scholar]
  95. Watson T, Hickok J, Fraker S, Korwek K, Poland RE et al. Evaluating the risk factors for hospital-onset Clostridium difficile infections in a large healthcare system. Clin Infect Dis 2018; 66:1957–1959 [View Article]
    [Google Scholar]
  96. Srinivasan VB, Rajamohan G. KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother 2013; 57:4449–4462 [View Article] [PubMed]
    [Google Scholar]
  97. Kangaba AA, Saglam FY, Tokman HB, Torun M, Torun MM. The prevalence of enterotoxin and antibiotic resistance genes in clinical and intestinal Bacteroides fragilis group isolates in Turkey. Anaerobe 2015; 35:72–76 [View Article] [PubMed]
    [Google Scholar]
  98. Rogers MB, Bennett TK, Payne CM, Smith CJ. Insertional activation of cepA leads to high-level beta-lactamase expression in Bacteroides fragilis clinical isolates. J Bacteriol 1994; 176:4376–4384 [View Article] [PubMed]
    [Google Scholar]
  99. Serafini F, Bottacini F, Viappiani A, Baruffini E, Turroni F et al. Insights into physiological and genetic mupirocin susceptibility in bifidobacteria. Appl Environ Microbiol 2011; 77:3141–3146 [View Article] [PubMed]
    [Google Scholar]
  100. Consortium U. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 2019; 47:D506–D515 [View Article] [PubMed]
    [Google Scholar]
  101. Keeney D, Ruzin A, Bradford PA. RamA, a transcriptional regulator, and AcrAB, an RND-type efflux pump, are associated with decreased susceptibility to tigecycline in Enterobacter cloacae. Microb Drug Resist 2007; 13:1–6 [View Article]
    [Google Scholar]
  102. Xu H, Miao V, Kwong W, Xia R, Davies J. Identification of a novel fosfomycin resistance gene (fosA2) in Enterobacter cloacae from the Salmon River, Canada. Lett Appl Microbiol 2011; 52:427–429 [View Article] [PubMed]
    [Google Scholar]
  103. Tóth AG, Csabai I, Maróti G, Jerzsele Á, Dubecz A et al. A glimpse of antimicrobial resistance gene diversity in kefir and yoghurt. Sci Rep 2020; 10:22458 [View Article]
    [Google Scholar]
  104. Fevre C, Jbel M, Passet V, Weill F-X, Grimont PAD et al. Six groups of the OXY beta-Lactamase evolved over millions of years in Klebsiella oxytoca. Antimicrob Agents Chemother 2005; 49:3453–3462 [View Article] [PubMed]
    [Google Scholar]
  105. Pakzad I, Zayyen Karin M, Taherikalani M, Boustanshenas M, Lari AR. Contribution of acrab efflux pump to ciprofloxacin resistance in klebsiella pneumoniae isolated from burn patients. GMS Hyg Infect Control 2013; 8:2196–5226
    [Google Scholar]
  106. Dale GE, Broger C, Hartman PG, Langen H, Page MG et al. Characterization of the gene for the chromosomal dihydrofolate reductase (DHFR) of Staphylococcus epidermidis ATCC 14990: the origin of the trimethoprim-resistant S1 DHFR from Staphylococcus aureus?. J Bacteriol 1995; 177:2965–2970 [View Article] [PubMed]
    [Google Scholar]
  107. Quigley EMM. Bifidobacterium longum. In In: The Microbiota in Gastrointestinal Pathophysiology Elsevier; 2017 pp 139–141
    [Google Scholar]
  108. Marriott D, Stark D, Harkness J. Veillonella parvula discitis and secondary bacteremia: a rare infection complicating endoscopy and colonoscopy?. J Clin Microbiol 2007; 45:672–674 [View Article]
    [Google Scholar]
  109. Sabaté Brescó M, Harris LG, Thompson K, Stanic B, Morgenstern M. Pathogenic mechanisms and host interactions in Staphylococcus epidermidis device-related infection. Front Microbiol 2017; 8:1401 [View Article]
    [Google Scholar]
  110. Liu LH, Wang NY, Wu AYJ, Lin CC, Lee CM et al. Citrobacter freundii bacteremia: risk factors of mortality and prevalence of resistance genes. J Microbiol Immunol Infect 2018; 51:565–572 [View Article]
    [Google Scholar]
  111. Ernst CM, Staubitz P, Mishra NN, Yang S-J, Hornig G et al. The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog 2009; 5:e1000660 [View Article]
    [Google Scholar]
  112. Lin FC, Devoe WF, Morrison C, Libonati J, Powers P et al. Outbreak of neonatal Citrobacter diversus meningitis in a suburban hospital. Pediatr Infect Dis J 1987; 6:50–55 [View Article] [PubMed]
    [Google Scholar]
  113. Rood JI, Cole ST. Molecular genetics and pathogenesis of Clostridium perfringens. Microbiol Rev 1991; 55:621–648 [View Article]
    [Google Scholar]
  114. Dittmar E, Beyer P, Fischer D, Schäfer V, Schoepe H et al. Necrotizing enterocolitis of the neonate with Clostridium perfringens: diagnosis, clinical course, and role of alpha toxin. Eur J Pediatr 2008; 167:891–895 [View Article]
    [Google Scholar]
  115. Dominguez KM, Moss RL. Necrotizing enterocolitis. Clin Perinatol 2012; 39:387–401 [View Article]
    [Google Scholar]
  116. Muhe LM, McClure EM, Nigussie AK, Mekasha A, Worku B et al. Major causes of death in preterm infants in selected hospitals in Ethiopia (SIP): a prospective, cross-sectional, observational study. Lancet Glob Health 2019; 7:e1130–e1138 [View Article]
    [Google Scholar]
  117. Oza S, Lawn JE, Hogan DR, Mathers C, Cousens SN. Neonatal cause-of-death estimates for the early and late neonatal periods for 194 countries: 2000-2013. Bull World Health Organ 2015; 93:19–28 [View Article]
    [Google Scholar]
  118. Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 2013; 11:297–308 [View Article]
    [Google Scholar]
  119. Endimiani A, Depasquale JM, Forero S, Perez F, Hujer AM et al. Emergence of blaKPC-containing Klebsiella pneumoniae in a long-term acute care hospital: a new challenge to our healthcare system. J Antimicrob Chemother 2009; 64:1102–1110 [View Article] [PubMed]
    [Google Scholar]
  120. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 2001; 45:1151–1161 [View Article] [PubMed]
    [Google Scholar]
  121. Perez F, Rudin SD, Marshall SH, Coakley P, Chen L et al. OqxAB, a quinolone and olaquindox efflux pump, is widely distributed among multidrug-resistant Klebsiella pneumoniae isolates of human origin. Antimicrob Agents Chemother 2013; 57:4602–4603 [View Article] [PubMed]
    [Google Scholar]
  122. Doménech-Sánchez A, Hernández-Allés S, Martínez-Martínez L, Benedí VJ, Albertí S. Identification and characterization of a new porin gene of Klebsiella pneumoniae: its role in beta-lactam antibiotic resistance. J Bacteriol 1999; 181:2726–2732 [View Article] [PubMed]
    [Google Scholar]
  123. Roy S, Datta S, Viswanathan R, Singh AK, Basu S. Tigecycline susceptibility in Klebsiella pneumoniae and Escherichia coli causing neonatal septicaemia (2007-10) and role of an efflux pump in tigecycline non-susceptibility. J Antimicrob Chemother 2013; 68:1036–1042 [View Article] [PubMed]
    [Google Scholar]
  124. Klontz EH, Tomich AD, Günther S, Lemkul JA, Deredge D et al. Structure and dynamics of FosA-mediated fosfomycin resistance in Klebsiella pneumoniae and Escherichia coli. Antimicrob Agents Chemother 2017; 61:e01572-17 [View Article]
    [Google Scholar]
  125. Hernández-Allés S, Benedí VJ, Martínez-Martínez L, Pascual A, Aguilar A et al. Development of resistance during antimicrobial therapy caused by insertion sequence interruption of porin Genes. Antimicrob Agents Chemother 1999; 43:937–939 [View Article]
    [Google Scholar]
  126. Martínez-Martínez L, Hernández-Allés S, Albertí S, Tomás JM, Benedi VJ et al. In vivo selection of porin-deficient mutants of Klebsiella pneumoniae with increased resistance to cefoxitin and expanded-spectrum-cephalosporins. Antimicrob Agents Chemother 1996; 40:342–348 [View Article] [PubMed]
    [Google Scholar]
  127. Silver LL. Fosfomycin: mechanism and resistance. Cold Spring Harb Perspect Med 2017; 7:a025262 [View Article]
    [Google Scholar]
  128. Suárez JE, Mendoza MC. Plasmid-encoded fosfomycin resistance. Antimicrob Agents Chemother 1991; 35:791–795 [View Article]
    [Google Scholar]
  129. Zhang L, Li XZ, Poole K. SmeDEF multidrug efflux pump contributes to intrinsic multidrug resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2001; 45:3497–3503 [View Article]
    [Google Scholar]
  130. Dorota P, Chmielarczyk A, Katarzyna L, Piotr M, Jan L et al. Klebsiella pneumoniae in breast milk-A cause of sepsis in neonate. Arch Med 2017; 09: [View Article]
    [Google Scholar]
  131. Wight NE. Donor human milk for preterm infants. J Perinatol 2001; 21:249–254 [View Article] [PubMed]
    [Google Scholar]
  132. Tóth AG, Csabai I, Krikó E, Tozser D, Maróti G et al. Raw milk for human consumption may carry antimicrobial resistance genes. bioRxiv 2019; 853333:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000899
Loading
/content/journal/mgen/10.1099/mgen.0.000899
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error