1887

Abstract

is a leading cause of bacterial meningitis in South-East Asia, with frequent zoonotic transfer to humans associated with close contact with pigs. A small number of invasive lineages are responsible for endemic infection in the swine industry, causing considerable global economic losses. A lack of surveillance and a rising trend in clinical treatment failure has raised concerns of growing antimicrobial resistance (AMR) among invasive . Gene flow between healthy and disease isolates is poorly understood and, in this study, we sample and sequence a collection of isolates predominantly from healthy pigs in Chiang Mai province, Northern Thailand. Pangenome characterization identified extensive genetic diversity and frequent AMR carriage in isolates from healthy pigs. Multiple AMR genes were identified, conferring resistance to aminoglycosides, lincosamides, tetracycline and macrolides. All isolates were non-susceptible to three or more different antimicrobial classes, and 75 % of non-serotype 2 isolates were non-susceptible to six or more classes (compared to 37.5 % of serotype 2 isolates). AMR genes were found on integrative and conjugative elements previously observed in other species, suggesting a mobile gene pool that can be accessed by invasive disease isolates. This article contains data hosted by Microreact.

Funding
This study was supported by the:
  • Medical Research Council (Award MR/V001213/1)
    • Principle Award Recipient: BenPascoe
  • Medical Research Council (Award MR/T030062/1)
    • Principle Award Recipient: K SheppardSamuel
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000882
2022-11-03
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/11/mgen000882.html?itemId=/content/journal/mgen/10.1099/mgen.0.000882&mimeType=html&fmt=ahah

References

  1. Nattinee K, Jessica KC, Evangelos M, Matthew DH, Susan M et al.Genetic diversity and variation in antimicrobial-resistance determinants of non-serotype 2 sstreptococcus suis isolates from healthy pigs FigShare 2022 [View Article]
    [Google Scholar]
  2. Gilbert M, Nicolas G, Cinardi G, Van Boeckel TP, Vanwambeke SO et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci Data 2018; 5:180227 [View Article]
    [Google Scholar]
  3. VanderWaal K, Deen J. Global trends in infectious diseases of swine. Proc Natl Acad Sci USA 2018; 115:11495–11500 [View Article]
    [Google Scholar]
  4. Gottschalk M, Segura M. Streptococcosis. In Diseases of Swine 2019 pp 934–950 [View Article]
    [Google Scholar]
  5. Segura M. Streptococcus suis research: progress and challenges. Pathogens 2020; 9:E707 [View Article]
    [Google Scholar]
  6. Dutkiewicz J, Sroka J, Zając V, Wasiński B, Cisak E et al. Streptococcus suis: a re-emerging pathogen associated with occupational exposure to pigs or pork products. Part I – epidemiology. Ann Agric Environ Med 2017; 24:683–695 [View Article]
    [Google Scholar]
  7. Rayanakorn A, Ademi Z, Liew D, Lee LH. PIN65 estimating the lifetime economic burden of Streptococcus suis and its productivity impact in Thailand. Value Health 2020; 23:S179 [View Article]
    [Google Scholar]
  8. van Samkar A, Brouwer MC, Schultsz C, van der Ende A, van de Beek D. Streptococcus suis meningitis: a systematic review and meta-analysis. PLoS Negl Trop Dis 2015; 9:e0004191 [View Article]
    [Google Scholar]
  9. Goyette-Desjardins G, Auger J-P, Xu J, Segura M, Gottschalk M. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg Microbes Infect 2014; 3:e45 [View Article]
    [Google Scholar]
  10. Takeuchi D, Kerdsin A, Akeda Y, Chiranairadul P, Loetthong P et al. Impact of a food safety campaign on Streptococcus suis infection in humans in Thailand. Am J Trop Med Hyg 2017; 96:1370–1377 [View Article]
    [Google Scholar]
  11. Rayanakorn A, Katip W, Goh BH, Oberdorfer P, Lee LH. Clinical manifestations and risk factors of Streptococcus suis mortality among northern Thai population: retrospective 13-year cohort study. Infect Drug Resist 2019; 12:3955–3965 [View Article]
    [Google Scholar]
  12. Weinert LA, Chaudhuri RR, Wang J, Peters SE, Corander J et al. Genomic signatures of human and animal disease in the zoonotic pathogen Streptococcus suis. Nat Commun 2015; 6:6740 [View Article]
    [Google Scholar]
  13. Murray GGR, Charlesworth J, Miller EL, Casey MJ, Lloyd CT et al. Genome reduction is associated with bacterial pathogenicity across different scales of temporal and ecological divergence. Mol Biol Evol 2021; 38:1570–1579 [View Article]
    [Google Scholar]
  14. Weinert LA, Chaudhuri RR, Wang J, Peters SE, Corander J et al. Publisher correction: genomic signatures of human and animal disease in the zoonotic pathogen Streptococcus suis. Nat Commun 2019; 10:5326 [View Article]
    [Google Scholar]
  15. Segura M, Calzas C, Grenier D, Gottschalk M. Initial steps of the pathogenesis of the infection caused by Streptococcus suis: fighting against nonspecific defenses. FEBS Lett 2016; 590:3772–3799 [View Article] [PubMed]
    [Google Scholar]
  16. Athey TBT, Teatero S, Lacouture S, Takamatsu D, Gottschalk M et al. Determining Streptococcus suis serotype from short-read whole-genome sequencing data. BMC Microbiol 2016; 16:162 [View Article]
    [Google Scholar]
  17. Hughes JM, Wilson ME, Wertheim HFL, Nghia HDT, Taylor W et al. Streptococcus suis: an emerging human pathogen. Clin Infect Dis 2009; 48:617–625 [View Article]
    [Google Scholar]
  18. Okura M, Osaki M, Nomoto R, Arai S, Osawa R et al. Current taxonomical situation of Streptococcus suis. Pathogens 2016; 5:E45 [View Article]
    [Google Scholar]
  19. Baig A, Weinert LA, Peters SE, Howell KJ, Chaudhuri RR et al. Whole genome investigation of a divergent clade of the pathogen Streptococcus suis. Front Microbiol 2015; 6:1191 [View Article]
    [Google Scholar]
  20. Stevens MJA, Spoerry Serrano N, Cernela N, Schmitt S, Schrenzel J et al. Massive diversity in whole-genome sequences of Streptococcus suis strains from infected pigs in Switzerland. Microbiol Resour Announc 2019; 8:e01656-18 [View Article]
    [Google Scholar]
  21. Zhang A, Yang M, Hu P, Wu J, Chen B et al. Comparative genomic analysis of Streptococcus suis reveals significant genomic diversity among different serotypes. BMC Genomics 2011; 12:523 [View Article]
    [Google Scholar]
  22. Okura M, Maruyama F, Ota A, Tanaka T, Matoba Y et al. Genotypic diversity of Streptococcus suis and the S. suis-like bacterium Streptococcus ruminantium in ruminants. Vet Res 2019; 50:94 [View Article]
    [Google Scholar]
  23. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA 2015; 112:5649–5654 [View Article]
    [Google Scholar]
  24. World Health Organization WHO Guidelines on Use of Medically Important Antimicrobials in Food-Producing Animals: web annex A: evidence base Geneva: World Health Organization; 2017
    [Google Scholar]
  25. Delannoy S, Le Devendec L, Jouy E, Fach P, Drider D et al. Characterization of colistin-resistant Escherichia coli isolated from diseased pigs in France. Front Microbiol 2017; 8:2278 [View Article]
    [Google Scholar]
  26. Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016; 16:161–168 [View Article] [PubMed]
    [Google Scholar]
  27. Patchanee P, Chokesajjawatee N, Santiyanont P, Chuammitri P, Deeudom M et al. Multiple clones of colistin-resistant Salmonella enterica carrying mcr-1 plasmids in meat products and patients in Northern Thailand. bioRxiv 2020415869 [View Article]
    [Google Scholar]
  28. Patchanee P, Tanamai P, Tadee P, Hitchings MD, Calland JK et al. Whole-genome characterisation of multidrug resistant monophasic variants of Salmonella typhimurium from pig production in Thailand. PeerJ 2020; 8:e9700 [View Article]
    [Google Scholar]
  29. Prasertsee T, Chuammitri P, Deeudom M, Chokesajjawatee N, Santiyanont P et al. Core genome sequence analysis to characterize Salmonella enterica serovar Rissen ST469 from a swine production chain. Int J Food Microbiol 2019; 304:68–74 [View Article] [PubMed]
    [Google Scholar]
  30. Tadee P, Patchanee P, Pascoe B, Sheppard SK, Meunsene D et al. Occurrence and sequence type of antimicrobial resistant Salmonella spp. circulating in antibiotic-free organic pig farms of Northern-Thailand. Thai J Vet Med 2021; 51:311–319 [View Article]
    [Google Scholar]
  31. Nguyen NT, Nguyen HM, Nguyen CV, Nguyen TV, Nguyen MT et al. Use of colistin and other critical antimicrobials on pig and chicken farms in southern Vietnam and its association with resistance in commensal Escherichia coli bacteria. Appl Environ Microbiol 2016; 82:3727–3735 [View Article]
    [Google Scholar]
  32. Pumart P PT, Thamlikitkul V, Riewpaiboon A, Prakongsai P, Limwattananon S. Health and economic impacts of antimicrobial resistance in Thailand. J Health Serv Res Policy 2012; 6:352–360
    [Google Scholar]
  33. Pathanasophon P, Worarach A, Narongsak W, Yuwapanichsampan S, Nuangmek A et al. Prevalence of Streptococcus suis in tonsils of slaughtered pigs in Lampang and Phayao provinces, Thailand 2009-2010. J Trop Med 2013; 36:8–14
    [Google Scholar]
  34. National Research Council Guide for the Care and Use of Laboratory Animals, 8th edn Washington, DC: National Academies Press; 2011
    [Google Scholar]
  35. Quinn PJ, Carter ME, Markey B, Carter GR. Clinical Veterinary Microbiology London: Wolfe Publishing; 1994
    [Google Scholar]
  36. Wisselink HJ, Joosten JJ, Smith HE. Multiplex PCR assays for simultaneous detection of six major serotypes and two virulence-associated phenotypes of Streptococcus suis in tonsillar specimens from pigs. J Clin Microbiol 2002; 40:2922–2929 [View Article] [PubMed]
    [Google Scholar]
  37. Marois C, Bougeard S, Gottschalk M, Kobisch M. Multiplex PCR assay for detection of Streptococcus suis species and serotypes 2 and 1/2 in tonsils of live and dead pigs. J Clin Microbiol 2004; 42:3169–3175 [View Article] [PubMed]
    [Google Scholar]
  38. Wisselink HJ, Smith HE, Stockhofe-Zurwieden N, Peperkamp K, Vecht U. Distribution of capsular types and production of muramidase-released protein (MRP) and extracellular factor (EF) of Streptococcus suis strains isolated from diseased pigs in seven European countries. Vet Microbiol 2000; 74:237–248 [View Article] [PubMed]
    [Google Scholar]
  39. CLSI Performance Standards for Antimicrobial Disk Susceptibility Tests, approved standard, 11th edn Wayne, PA: Clinical and Laboratory Standards Institute; 2012 p 76
    [Google Scholar]
  40. CLSI Performance Standards for Antimicrobial Susceptibility Testing, M100-S27 Wayne, PA: Clinical and Laboratory Standards Institute; 2017
    [Google Scholar]
  41. CLSI Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, approved standard, 3rd edn Wayne, PA: Clinical and Laboratory Standards Institute; 2008
    [Google Scholar]
  42. CLSI Performance Standards for Antimicrobial Susceptibility Testing, M100-S30 Wayne, PA: Clinical and Laboratory Standards Institute; 2020
    [Google Scholar]
  43. CLSI Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th edn Wayne, PA: Clinical and Laboratory Standards Institute; 2018
    [Google Scholar]
  44. CLSI Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, approved standard, 2nd edn Wayne, PA: Clinical and Laboratory Standards Institute; 2002
    [Google Scholar]
  45. Rosco Diagnostica NEO-SENSITABS Veterinary Practice According to CLSI Breakpoints Taastrup: Rosco Diagnostica; 2013
    [Google Scholar]
  46. Howe RA, Andrews JM. BSAC Working Party on Susceptibility Testing BSAC standardized disc susceptibility testing method (version 11). J Antimicrob Chemother 2012; 67:2783–2784 [View Article] [PubMed]
    [Google Scholar]
  47. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  48. King SJ, Leigh JA, Heath PJ, Luque I, Tarradas C et al. Development of a multilocus sequence typing scheme for the pig pathogen Streptococcus suis: identification of virulent clones and potential capsular serotype exchange. J Clin Microbiol 2002; 40:3671–3680 [View Article] [PubMed]
    [Google Scholar]
  49. Holden MTG, Hauser H, Sanders M, Ngo TH, Cherevach I et al. Rapid evolution of virulence and drug resistance in the emerging zoonotic pathogen Streptococcus suis. PLoS One 2009; 4:e6072 [View Article]
    [Google Scholar]
  50. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [View Article] [PubMed]
    [Google Scholar]
  51. Morley VJ, Woods RJ, Read AF. Bystander selection for antimicrobial resistance: implications for patient health. Trends Microbiol 2019; 27:864–877 [View Article]
    [Google Scholar]
  52. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  53. Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genom 2016; 2:e000093 [View Article] [PubMed]
    [Google Scholar]
  54. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  55. Bayliss SC, Thorpe HA, Coyle NM, Sheppard SK, Feil EJ. PIRATE: a fast and scalable pangenomics toolbox for clustering diverged orthologues in bacteria. Gigascience 2019; 8:giz119 [View Article]
    [Google Scholar]
  56. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article] [PubMed]
    [Google Scholar]
  57. Hadjirin NF, Miller EL, Murray GGR, Yen PLK, Phuc HD et al. Linking phenotype, genotype and ecology: antimicrobial resistance in the zoonotic pathogen Streptococcus suis. bioRxiv 2020:078493 [View Article]
    [Google Scholar]
  58. Redondo-Salvo S, Fernández-López R, Ruiz R, Vielva L, de Toro M et al. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nat Commun 2020; 11:3602 [View Article]
    [Google Scholar]
  59. Zhang C, Zhang Z, Song L, Fan X, Wen F et al. Antimicrobial resistance profile and genotypic characteristics of Streptococcus suis capsular type 2 isolated from clinical carrier sows and diseased pigs in China. Biomed Res Int 2015; 2015:284303 [View Article]
    [Google Scholar]
  60. Soares TCS, Paes AC, Megid J, Ribolla PEM, Paduan K et al. Antimicrobial susceptibility of Streptococcus suis isolated from clinically healthy swine in Brazil. Can J Vet Res 2014; 78:145–149
    [Google Scholar]
  61. Seitz M, Valentin-Weigand P, Willenborg J. Use of antibiotics and antimicrobial resistance in veterinary medicine as exemplified by the swine pathogen Streptococcus suis. In Stadler M, Dersch P. eds How to Overcome the Antibiotic Crisis Cham: Springer; 2016 pp 103–121
    [Google Scholar]
  62. Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo SW et al. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res 2019; 29:304–316 [View Article] [PubMed]
    [Google Scholar]
  63. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 2019; 47:D687–D692 [View Article] [PubMed]
    [Google Scholar]
  64. Feldgarden M, Brover V, Gonzalez-Escalona N, Frye JG, Haendiges J et al. AMRFinderPlus and the reference gene catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci Rep 2021; 11:12728 [View Article]
    [Google Scholar]
  65. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article] [PubMed]
    [Google Scholar]
  66. Florensa AF, Kaas RS, Clausen P, Aytan-Aktug D, Aarestrup FM. ResFinder - an open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microb Genom 2022; 8:000748 [View Article]
    [Google Scholar]
  67. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article]
    [Google Scholar]
  68. Sayers EW, Agarwala R, Bolton EE, Brister JR, Canese K et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2019; 47:D23–D28 [View Article]
    [Google Scholar]
  69. Robertson J, Nash JHE. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb Genom 2018; 4:000206 [View Article]
    [Google Scholar]
  70. Robertson J, Bessonov K, Schonfeld J, Nash JHE. Universal whole-sequence-based plasmid typing and its utility to prediction of host range and epidemiological surveillance. Microb Genom 2020; 6:000435 [View Article]
    [Google Scholar]
  71. Sweeney MT, Lubbers BV, Schwarz S, Watts JL. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J Antimicrob Chemother 2018; 73:1460–1463 [View Article] [PubMed]
    [Google Scholar]
  72. Padungtod P, Tharavichitkul P, Junya S, Chaisowong W, Kadohira M et al. Incidence and presence of virulence factors of Streptococcus suis infection in slaughtered pigs from Chiang Mai, Thailand. Southeast Asian J Trop Med Public Health 2010; 41:1454–1461
    [Google Scholar]
  73. Kongkaew S, Wongsawan K, Pansumdang C, Takam S, Yano T et al. Identification and antimicrobial susceptibility of Streptococcus suis isolated from pigs tonsil swabs. Kasetsart Vet 2012; 22:1–13
    [Google Scholar]
  74. Thongkamkoon P, Kiatyingangsulee T, Gottschalk M. Serotypes of Streptococcus suis isolated from healthy pigs in Phayao Province, Thailand. BMC Res Notes 2017; 10:53 [View Article]
    [Google Scholar]
  75. Flores JL, Higgins R, D’Allaire S, Charette R, Boudreau M et al. Distribution of the different capsular types of Streptococcus suis in nineteen swine nurseries. Can Vet J 1993; 34:170–171
    [Google Scholar]
  76. Kerdsin A, Hatrongjit R, Gottschalk M, Takeuchi D, Hamada S et al. Emergence of Streptococcus suis serotype 9 infection in humans. J Microbiol Immunol Infect 2017; 50:545–546 [View Article]
    [Google Scholar]
  77. Prüfer TL, Rohde J, Verspohl J, Rohde M, de Greeff A et al. Molecular typing of Streptococcus suis strains isolated from diseased and healthy pigs between 1996-2016. PLoS One 2019; 14:e0210801 [View Article]
    [Google Scholar]
  78. Hatrongjit R, Fittipaldi N, Gottschalk M, Kerdsin A. Tools for molecular epidemiology of Streptococcus suis. Pathogens 2020; 9:E81 [View Article]
    [Google Scholar]
  79. Calland JK, Pascoe B, Bayliss SC, Mourkas E, Berthenet E et al. Quantifying bacterial evolution in the wild: a birthday problem for Campylobacter lineages. PLoS Genet 2021; 17:e1009829 [View Article]
    [Google Scholar]
  80. Maisey HC, Hensler M, Nizet V, Doran KS. Group B streptococcal pilus proteins contribute to adherence to and invasion of brain microvascular endothelial cells. J Bacteriol 2007; 189:1464–1467 [View Article]
    [Google Scholar]
  81. Weinert LA, Welch JJ. Why might bacterial pathogens have small genomes?. Trends Ecol Evol 2017; 32:936–947 [View Article]
    [Google Scholar]
  82. McInerney JO, McNally A, O’Connell MJ. Why prokaryotes have pangenomes. Nat Microbiol 2017; 2:17040 [View Article]
    [Google Scholar]
  83. Sheppard SK, Guttman DS, Fitzgerald JR. Population genomics of bacterial host adaptation. Nat Rev Genet 2018; 19:549–565 [View Article] [PubMed]
    [Google Scholar]
  84. Young JPW. Bacteria are smartphones and mobile genes are apps. Trends Microbiol 2016; 24:931–932 [View Article]
    [Google Scholar]
  85. Dearlove BL, Cody AJ, Pascoe B, Méric G, Wilson DJ et al. Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections. ISME J 2016; 10:721–729 [View Article]
    [Google Scholar]
  86. Mourkas E, Florez-Cuadrado D, Pascoe B, Calland JK, Bayliss SC et al. Gene pool transmission of multidrug resistance among Campylobacter from livestock, sewage and human disease. Environ Microbiol 2019; 21:4597–4613 [View Article]
    [Google Scholar]
  87. Zhao S, Tyson GH, Chen Y, Li C, Mukherjee S et al. Whole-genome sequencing analysis accurately predicts antimicrobial resistance phenotypes in Campylobacter spp. Appl Environ Microbiol 2016; 82:459–466 [View Article]
    [Google Scholar]
  88. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020; 75:3491–3500 [View Article] [PubMed]
    [Google Scholar]
  89. Florez-Cuadrado D, Ugarte-Ruiz M, Meric G, Quesada A, Porrero MC et al. Genome comparison of erythromycin resistant Campylobacter from turkeys identifies hosts and pathways for horizontal spread of erm(B) genes. Front Microbiol 2017; 8:2240 [View Article]
    [Google Scholar]
  90. Wang R, van Dorp L, Shaw LP, Bradley P, Wang Q et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat Commun 2018; 9:1179 [View Article]
    [Google Scholar]
  91. Hoa NT, Chieu TTB, Nghia HDT, Mai NTH, Anh PH et al. The antimicrobial resistance patterns and associated determinants in Streptococcus suis isolated from humans in southern Vietnam, 1997–2008. BMC Infect Dis 2011; 11:6 [View Article]
    [Google Scholar]
  92. Palmieri C, Varaldo PE, Facinelli B. Streptococcus suis, an emerging drug-resistant animal and human pathogen. Front Microbiol 2011; 2:235 [View Article]
    [Google Scholar]
  93. Martel A, Baele M, Devriese LA, Goossens H, Wisselink HJ et al. Prevalence and mechanism of resistance against macrolides and lincosamides in Streptococcus suis isolates. Vet Microbiol 2001; 83:287–297 [View Article] [PubMed]
    [Google Scholar]
  94. Tan M-F, Tan J, Zeng Y-B, Li H-Q, Yang Q et al. Antimicrobial resistance phenotypes and genotypes of Streptococcus suis isolated from clinically healthy pigs from 2017 to 2019 in Jiangxi Province, China. J Appl Microbiol 2021; 130:797–806 [View Article]
    [Google Scholar]
  95. Chen L, Song Y, Wei Z, He H, Zhang A et al. Antimicrobial susceptibility, tetracycline and erythromycin resistance genes, and multilocus sequence typing of Streptococcus suis isolates from diseased pigs in China. J Vet Med Sci 2013; 75:583–587 [View Article]
    [Google Scholar]
  96. Yongkiettrakul S, Maneerat K, Arechanajan B, Malila Y, Srimanote P et al. Antimicrobial susceptibility of Streptococcus suis isolated from diseased pigs, asymptomatic pigs, and human patients in Thailand. BMC Vet Res 2019; 15:5 [View Article]
    [Google Scholar]
  97. Bojarska A, Molska E, Janas K, Skoczyńska A, Stefaniuk E et al. Streptococcus suis in invasive human infections in Poland: clonality and determinants of virulence and antimicrobial resistance. Eur J Clin Microbiol Infect Dis 2016; 35:917–925 [View Article] [PubMed]
    [Google Scholar]
  98. Mourkas E, Taylor AJ, Méric G, Bayliss SC, Pascoe B et al. Agricultural intensification and the evolution of host specialism in the enteric pathogen Campylobacter jejuni. Proc Natl Acad Sci USA 2020; 117:11018–11028 [View Article]
    [Google Scholar]
  99. Gurung M, Tamang MD, Moon DC, Kim S-R, Jeong J-H et al. Molecular basis of resistance to selected antimicrobial agents in the emerging zoonotic pathogen Streptococcus suis. J Clin Microbiol 2015; 53:2332–2336 [View Article]
    [Google Scholar]
  100. Segura M, Aragon V, Brockmeier SL, Gebhart C, Greeff A de et al. Update on Streptococcus suis research and prevention in the era of antimicrobial restriction: 4th International Workshop on S. suis. Pathogens 2020; 9:E374 [View Article]
    [Google Scholar]
  101. Hadjirin NF, Miller EL, Murray GGR, Yen PLK, Phuc HD et al. A comprehensive portrait of antimicrobial resistance in the zoonotic pathogen Streptococcus suis. bioRxiv 2021078493 [View Article]
    [Google Scholar]
  102. Tedijanto C, Olesen SW, Grad YH, Lipsitch M. Estimating the proportion of bystander selection for antibiotic resistance among potentially pathogenic bacterial flora. Proc Natl Acad Sci USA 2018; 115:E11988–E11995 [View Article]
    [Google Scholar]
  103. Lakkitjaroen N, Kaewmongkol S, Metheenukul P, Karnchanabanthoeng A, Satchasataporn K et al. Prevalence and antimicrobial susceptibility of Streptococcus suis isolated from slaughter pigs in northern Thailand. Kasetsart J 2011; 45:78–83
    [Google Scholar]
  104. Wang B, Wang Y, Xie X, Diao Z, Xie K et al. Quantitative analysis of spectinomycin and lincomycin in poultry eggs by accelerated solvent extraction coupled with gas chromatography tandem mass spectrometry. Foods 2020; 9:E651 [View Article]
    [Google Scholar]
  105. Bosman AL, Loest D, Carson CA, Agunos A, Collineau L et al. Developing Canadian defined daily doses for animals: a metric to quantify antimicrobial use. Front Vet Sci 2019; 6:220 [View Article]
    [Google Scholar]
  106. Li X-S, Dong W-C, Wang X-M, Hu G-Z, Wang Y-B et al. Presence and genetic environment of pleuromutilin-lincosamide-streptogramin A resistance gene lsa(E) in enterococci of human and swine origin. J Antimicrob Chemother 2014; 69:1424–1426 [View Article] [PubMed]
    [Google Scholar]
  107. Huang K, Zhang Q, Song Y, Zhang Z, Zhang A et al. Characterization of spectinomycin resistance in Streptococcus suis leads to two novel insights into drug resistance formation and dissemination mechanism. Antimicrob Agents Chemother 2016; 60:6390–6392 [View Article]
    [Google Scholar]
  108. Athey TBT, Teatero S, Takamatsu D, Wasserscheid J, Dewar K et al. Population structure and antimicrobial resistance profiles of Streptococcus suis serotype 2 sequence type 25 strains. PLoS One 2016; 11:e0150908 [View Article]
    [Google Scholar]
  109. McHugh MP, Parcell BJ, Pettigrew KA, Toner G, Khatamzas E et al. Presence of optrA-mediated linezolid resistance in multiple lineages and plasmids of Enterococcus faecalis revealed by long read sequencing. Microbiology 2022; 168:001137 [View Article]
    [Google Scholar]
  110. Yan H, Yu R, Li D, Shi L, Schwarz S et al. A novel multiresistance gene cluster located on a plasmid-borne transposon in Listeria monocytogenes. J Antimicrob Chemother 2020; 75:868–872 [View Article]
    [Google Scholar]
  111. Zhou W, Gao S, Xu H, Zhang Z, Chen F et al. Distribution of the optrA gene in Enterococcus isolates at a tertiary care hospital in China. J Glob Antimicrob Resist 2019; 17:180–186 [View Article] [PubMed]
    [Google Scholar]
  112. Brenciani A, Morroni G, Vincenzi C, Manso E, Mingoia M et al. Detection in Italy of two clinical Enterococcus faecium isolates carrying both the oxazolidinone and phenicol resistance gene optrA and a silent multiresistance gene cfr. J Antimicrob Chemother 2016; 71:1118–1119 [View Article] [PubMed]
    [Google Scholar]
  113. Bender JK, Cattoir V, Hegstad K, Sadowy E, Coque TM et al. Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: towards a common nomenclature. Drug Resist Updat 2018; 40:25–39 [View Article]
    [Google Scholar]
  114. Huang J, Sun J, Wu Y, Chen L, Duan D et al. Identification and pathogenicity of an XDR Streptococcus suis isolate that harbours the phenicol-oxazolidinone resistance genes optrA and cfr, and the bacitracin resistance locus bcrABDR. Int J Antimicrob Agents 2019; 54:43–48 [View Article]
    [Google Scholar]
  115. Huang J, Chen L, Wu Z, Wang L. Retrospective analysis of genome sequences revealed the wide dissemination of optrA in Gram-positive bacteria. J Antimicrob Chemother 2017; 72:614–616 [View Article] [PubMed]
    [Google Scholar]
  116. Du F, Lv X, Duan D, Wang L, Huang J. Characterization of a linezolid-and vancomycin-resistant Streptococcus suis isolate that harbours optrA and vanG operons. Front Microbiol 2019; 10:2026 [View Article]
    [Google Scholar]
  117. Sztanke K, Pasternak K, Sztanke M. Oxazolidinones – a new class of broad-spectrum chemotherapeutics. Ann Univ Mariae Curie Sklodowska Med 2004; 59:335–341
    [Google Scholar]
  118. Wang Y, Lv Y, Cai J, Schwarz S, Cui L et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother 2015; 70:2182–2190 [View Article] [PubMed]
    [Google Scholar]
  119. Hadjirin NF, Miller EL, Murray GGR, Yen PLK, Phuc HD et al. Large-scale genomic analysis of antimicrobial resistance in the zoonotic pathogen Streptococcus suis. BMC Biol 2021; 19:191 [View Article]
    [Google Scholar]
  120. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article]
    [Google Scholar]
  121. Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM et al. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 2018; 34:292–293 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000882
Loading
/content/journal/mgen/10.1099/mgen.0.000882
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

EXCEL

Supplementary material 3

EXCEL

Supplementary material 4

EXCEL

Supplementary material 5

EXCEL

Supplementary material 6

EXCEL

Supplementary material 7

EXCEL

Supplementary material 8

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error