1887

Abstract

Approximately 200 O-serogroups of have already been identified; however, only 2 serogroups, O1 and O139, are strongly related to pandemic cholera. The study of non-O1 and non-O139 strains has hitherto been limited. Nevertheless, there are other clinically and epidemiologically important serogroups causing outbreaks with cholera-like disease. Here, we report a comprehensive genome analysis of the whole set of O-serogroup reference strains to provide an overview of this important bacterial pathogen. It revealed structural diversity of the O-antigen biosynthesis gene clusters located at specific loci on chromosome 1 and 16 pairs of strains with almost identical O-antigen biosynthetic gene clusters but differing in serological patterns. This might be due to the presence of O-antigen biosynthesis-related genes at secondary loci on chromosome 2.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000860
2022-08-05
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/8/mgen000860.html?itemId=/content/journal/mgen/10.1099/mgen.0.000860&mimeType=html&fmt=ahah

References

  1. Gardner AD, Venkatraman KV. The antigens of the cholera group of vibrios. J Hyg 1935; 35:262–282 [View Article]
    [Google Scholar]
  2. Ryan ET. The cholera pandemic, still with us after half a century: time to rethink. PLoS Negl Trop Dis 2011; 5:e1003 [View Article] [PubMed]
    [Google Scholar]
  3. World Health Orginization Outbreak of gastro-enteritis by non agglutinable (NAG) vibrios = épidémie de gastro-entérite due a des vibrions non agglutinables. Weekly Epidemiological Record 1969; 44:10
    [Google Scholar]
  4. Tobin-D’Angelo M, Smith AR, Bulens SN, Thomas S, Hodel M et al. Severe diarrhea caused by cholera toxin-producing Vibrio cholerae serogroup O75 infections acquired in the southeastern United States. Clin Infect Dis 2008; 47:1035–1040 [View Article] [PubMed]
    [Google Scholar]
  5. Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK. Chitin induces natural competence in Vibrio cholerae. Science 2005; 310:1824–1827 [View Article]
    [Google Scholar]
  6. Blokesch M, Schoolnik GK. Serogroup conversion of Vibrio cholerae in aquatic reservoirs. PLoS Pathog 2007; 3:e81 [View Article] [PubMed]
    [Google Scholar]
  7. Keymer DP, Miller MC, Schoolnik GK, Boehm AB. Genomic and phenotypic diversity of coastal Vibrio cholerae strains is linked to environmental factors. Appl Environ Microbiol 2007; 73:3705–3714 [View Article] [PubMed]
    [Google Scholar]
  8. Metzger LC, Blokesch M. Regulation of competence-mediated horizontal gene transfer in the natural habitat of Vibrio cholerae. Curr Opin Microbiol 2016; 30:1–7 [View Article] [PubMed]
    [Google Scholar]
  9. Morita M, Yamamoto S, Hiyoshi H, Kodama T, Okura M et al. Horizontal gene transfer of a genetic island encoding a type III secretion system distributed in Vibrio cholerae. Microbiol Immunol 2013; 57:334–339 [View Article] [PubMed]
    [Google Scholar]
  10. Udden SMN, Zahid MSH, Biswas K, Ahmad QS, Cravioto A et al. Acquisition of classical CTX prophage from Vibrio cholerae O141 by El Tor strains aided by lytic phages and chitin-induced competence. Proc Natl Acad Sci U S A 2008; 105:11951–11956 [View Article] [PubMed]
    [Google Scholar]
  11. Brenner DJ, Davis BR, Kudoh Y, Ohashi M, Sakazaki R et al. Serological comparison of two collections of Vibrio cholerae non O1. J Clin Microbiol 1982; 16:319–323 [View Article] [PubMed]
    [Google Scholar]
  12. Davis BR, Fanning GR, Madden JM, Steigerwalt AG, Bradford HB Jr et al. Characterization of biochemically atypical Vibrio cholerae strains and designation of a new pathogenic species, Vibrio mimicus. J Clin Microbiol 1981; 14:631–639 [View Article] [PubMed]
    [Google Scholar]
  13. Kirchberger PC, Turnsek M, Hunt DE, Haley BJ, Colwell RR et al. Vibrio metoecus sp. nov., a close relative of Vibrio cholerae isolated from coastal brackish ponds and clinical specimens. Int J Syst Evol Microbiol 2014; 64:3208–3214 [View Article] [PubMed]
    [Google Scholar]
  14. Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 2015; 31:587–589 [View Article] [PubMed]
    [Google Scholar]
  15. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  16. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article] [PubMed]
    [Google Scholar]
  17. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  18. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML et al. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 2000; 406:477–483 [View Article] [PubMed]
    [Google Scholar]
  19. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article] [PubMed]
    [Google Scholar]
  20. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  21. Inouye M, Dashnow H, Raven L-A, Schultz MB, Pope BJ et al. SRST2: Rapid genomic surveillance for public health and hospital microbiology labs. Genome Med 2014; 6:11 [View Article] [PubMed]
    [Google Scholar]
  22. Yamasaki S, Shimizu T, Hoshino K, Ho ST, Shimada T et al. The genes responsible for O-antigen synthesis of Vibrio cholerae O139 are closely related to those of Vibrio cholerae O22. Gene 1999; 237:321–332 [View Article] [PubMed]
    [Google Scholar]
  23. Nothaft H, Szymanski CM. Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol 2010; 8:765–778 [View Article] [PubMed]
    [Google Scholar]
  24. Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY et al. Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci U S A 2009; 106:15442–15447 [View Article] [PubMed]
    [Google Scholar]
  25. De Maayer P, Chan WY, Rubagotti E, Venter SN, Toth IK et al. Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts. BMC Genomics 2014; 15:404 [View Article] [PubMed]
    [Google Scholar]
  26. Donati C, Hiller NL, Tettelin H, Muzzi A, Croucher NJ et al. Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol 2010; 11:10 [View Article] [PubMed]
    [Google Scholar]
  27. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S et al. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 2009; 5:e1000344 [View Article] [PubMed]
    [Google Scholar]
  28. Iguchi A, Iyoda S, Kikuchi T, Ogura Y, Katsura K et al. A complete view of the genetic diversity of the Escherichia coli O-antigen biosynthesis gene cluster. DNA Res 2015; 22:101–107 [View Article] [PubMed]
    [Google Scholar]
  29. Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW et al. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 2009; 33:376–393 [View Article] [PubMed]
    [Google Scholar]
  30. Marin MA, Vicente ACP. Architecture of the superintegron in Vibrio cholerae: identification of core and unique genes. F1000Res 2013; 2:63 [View Article] [PubMed]
    [Google Scholar]
  31. Labbate M, Orata FD, Petty NK, Jayatilleke ND, King WL et al. A genomic island in Vibrio cholerae with VPI-1 site-specific recombination characteristics contains CRISPR-Cas and type VI secretion modules. Sci Rep 2016; 6:36891 [View Article] [PubMed]
    [Google Scholar]
  32. Egan ES, Waldor MK. Distinct replication requirements for the two Vibrio cholerae chromosomes. Cell 2003; 114:521–530 [View Article] [PubMed]
    [Google Scholar]
  33. Venkova-Canova T, Chattoraj DK. Transition from a plasmid to a chromosomal mode of replication entails additional regulators. Proc Natl Acad Sci U S A 2011; 108:6199–6204 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000860
Loading
/content/journal/mgen/10.1099/mgen.0.000860
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error