1887

Abstract

Insertion sequences (ISs) and other transposable elements are associated with the mobilization of antibiotic resistance determinants and the modulation of pathogenic characteristics. In this work, we aimed to investigate the association between ISs and antibiotic resistance genes, and their role in the dissemination and modification of the antibiotic-resistant phenotype. To that end, we leveraged fully resolved and genomes of isolates collected over 5 days from an inpatient with prolonged bacteraemia. Isolates from both species harboured similar IS family content but showed significant species-dependent differences in copy number and arrangements of ISs throughout their replicons. Here, we describe two inter-specific IS-mediated recombination events and IS-mediated excision events in plasmids of isolates. We also characterize a novel arrangement of the ISs in a Tn1546-like transposon in isolates likely implicated in a vancomycin genotype–phenotype discrepancy. Furthermore, an extended analysis revealed a novel association between daptomycin resistance mutations in genes and a putative composite transposon in , offering a new paradigm for the study of daptomycin resistance and novel insights into its dissemination. In conclusion, our study highlights the role ISs and other transposable elements play in the rapid adaptation and response to clinically relevant stresses such as aggressive antibiotic treatment in enterococci.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000855
2022-08-03
2024-07-20
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/8/mgen000855.html?itemId=/content/journal/mgen/10.1099/mgen.0.000855&mimeType=html&fmt=ahah

References

  1. Lewis K, Caboni M. The making of a pathogen. Cell Host Microbe 2017; 21:653–654 [View Article]
    [Google Scholar]
  2. Ch’ng J-H, Chong KKL, Lam LN, Wong JJ, Kline KA. Biofilm-associated infection by enterococci. Nat Rev Microbiol 2019; 17:82–94 [View Article] [PubMed]
    [Google Scholar]
  3. Price VJ, McBride SW, Hullahalli K, Chatterjee A, Duerkop BA et al. Enterococcus faecalis CRISPR-Cas is a robust barrier to conjugative antibiotic resistance dissemination in the murine intestine. mSphere 2019; 4:e00464-19 [View Article]
    [Google Scholar]
  4. Fiore E, Van Tyne D, Gilmore MS, Fischetti VA, Novick RP. Pathogenicity of Enterococci. Microbiol Spectr 2019; 7: [View Article]
    [Google Scholar]
  5. Molina L, Udaondo Z, Duque E, Fernández M, Bernal P et al. Specific gene loci of clinical Pseudomonas putida isolates. PLOS ONE 2016; 11:e0147478 [View Article] [PubMed]
    [Google Scholar]
  6. Faron ML, Ledeboer NA, Buchan BW. Resistance mechanisms, epidemiology, and approaches to screening for vancomycin-resistant Enterococcus in the health care setting. J Clin Microbiol 2016; 54:2436–2447 [View Article] [PubMed]
    [Google Scholar]
  7. Rios R, Reyes J, Carvajal LP, Rincon S, Panesso D et al. Genomic epidemiology of vancomycin-resistant Enterococcus faecium (VREfm) in Latin America: revisiting the global VRE population structure. Sci Rep 2020; 10:5636 [View Article] [PubMed]
    [Google Scholar]
  8. van Hal SJ, Ip CLC, Ansari MA, Wilson DJ, Espedido BA et al. Evolutionary dynamics of Enterococcus faecium reveals complex genomic relationships between isolates with independent emergence of vancomycin resistance. Microb Genom 2016; 2: [View Article]
    [Google Scholar]
  9. van Hal SJ, Willems RJL, Gouliouris T, Ballard SA, Coque TM et al. The global dissemination of hospital clones of Enterococcus faecium. Genome Med 2021; 13:52 [View Article] [PubMed]
    [Google Scholar]
  10. van Hal SJ, Willems RJL, Gouliouris T, Ballard SA, Coque TM et al. The interplay between community and hospital Enterococcus faecium clones within health-care settings: a genomic analysis. Lancet Microbe 2022; 3:e133–e141 [View Article] [PubMed]
    [Google Scholar]
  11. Lebreton F, Manson AL, Saavedra JT, Straub TJ, Earl AM et al. Tracing the Enterococci from paleozoic origins to the Hospital. Cell 2017; 169:849–861 [View Article] [PubMed]
    [Google Scholar]
  12. Pöntinen AK, Top J, Arredondo-Alonso S, Tonkin-Hill G, Freitas AR et al. Apparent nosocomial adaptation of Enterococcus faecalis predates the modern hospital era. Nat Commun 2021; 12:1523 [View Article] [PubMed]
    [Google Scholar]
  13. Top J, Arredondo-Alonso S, Schürch AC, Puranen S, Pesonen M et al. Genomic rearrangements uncovered by genome-wide co-evolution analysis of a major nosocomial pathogen, Enterococcus faecium. Microb Genom 2020; 6:12 [View Article]
    [Google Scholar]
  14. Igbinosa EO, Beshiru A. Antimicrobial resistance, virulence determinants, and biofilm formation of Enterococcus species from ready-to-eat seafood. Front Microbiol 2019; 10:728 [View Article]
    [Google Scholar]
  15. Arredondo-Alonso S, Top J, McNally A, Puranen S, Pesonen M et al. Plasmids shaped the recent emergence of the major nosocomial pathogen Enterococcus faecium. mBio 2020; 11:e03284-19 [View Article]
    [Google Scholar]
  16. Bayjanov JR, Baan J, Rogers MRC, Troelstra A, Willems RJL et al. Enterococcus faecium genome dynamics during long-term asymptomatic patient gut colonization. Microb Genom 2019; 5: [View Article]
    [Google Scholar]
  17. Freitas AR, Tedim AP, Francia MV, Jensen LB, Novais C et al. Multilevel population genetic analysis of vanA and vanB Enterococcus faecium causing nosocomial outbreaks in 27 countries (1986-2012). J Antimicrob Chemother 2016; 71:3351–3366 [View Article] [PubMed]
    [Google Scholar]
  18. Orlek A, Stoesser N, Anjum MF, Doumith M, Ellington MJ et al. Plasmid classification in an Era of whole-genome sequencing: application in studies of antibiotic resistance epidemiology. Front Microbiol 2017; 8:182 [View Article] [PubMed]
    [Google Scholar]
  19. Cao MD, Nguyen SH, Ganesamoorthy D, Elliott AG, Cooper MA et al. Scaffolding and completing genome assemblies in real-time with nanopore sequencing. Nat Commun 2017; 8:14515 [View Article] [PubMed]
    [Google Scholar]
  20. Rezaei Javan R, Ramos-Sevillano E, Akter A, Brown J, Brueggemann AB. Prophages and satellite prophages are widespread in Streptococcus and may play a role in Pneumococcal pathogenesis. Nat Commun 2019; 10:4852 [View Article] [PubMed]
    [Google Scholar]
  21. Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev 2014; 38:865–891 [View Article] [PubMed]
    [Google Scholar]
  22. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 2018; 31:e00088-17 [View Article] [PubMed]
    [Google Scholar]
  23. Hickman AB, Dyda F. Mechanisms of DNA Transposition. In: Mobile DNA III. John Wiley & Sons, Ltd; 2015 https://onlinelibrary.wiley.com/doi/abs/10.1128/9781555819217.ch25 accessed 10 March 2021
  24. Vandecraen J, Chandler M, Aertsen A, Van Houdt R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit Rev Microbiol 2017; 43:709–730 [View Article] [PubMed]
    [Google Scholar]
  25. Berg DE, Berg CM, Sasakawa C. Bacterial transposon Tn5: evolutionary inferences. Mol Biol Evol 1984; 1:411–422 [View Article] [PubMed]
    [Google Scholar]
  26. Alton NK, Vapnek D. Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn9. Nature 1979; 282:864–869 [View Article] [PubMed]
    [Google Scholar]
  27. Foster TJ, Davis MA, Roberts DE, Takeshita K, Kleckner N. Genetic organization of transposon Tn10. Cell 1981; 23:201–213 [View Article] [PubMed]
    [Google Scholar]
  28. Prudhomme M, Turlan C, Claverys J-P, Chandler M. Diversity of Tn4001 transposition products: the flanking IS256 elements can form tandem dimers and IS circles. J Bacteriol 2002; 184:433–443 [View Article] [PubMed]
    [Google Scholar]
  29. Wu Y, Aandahl RZ, Tanaka MM. Dynamics of bacterial insertion sequences: can transposition bursts help the elements persist?. BMC Evol Biol 2015; 15:288 [View Article] [PubMed]
    [Google Scholar]
  30. Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, 29th ed. Clinical and Laboratory Standards Institute, Wayne, PA: CLSI supplement M100; 2019
    [Google Scholar]
  31. Udaondo Z, Wongsurawat T, Jenjaroenpun P, Anderson C, Lopez J et al. Draft genome sequences of 48 vancomycin-Resistant Enterococcus faecium strains isolated from inpatients with bacteremia and urinary tract infection. Microbiol Resour Announc 2019; 8:e00222-19 [View Article] [PubMed]
    [Google Scholar]
  32. Udaondo Z, Jenjaroenpun P, Wongsurawat T, Meyers E, Anderson C et al. Two cases of vancomycin-resistant Enterococcus faecium bacteremia with development of daptomycin-resistant phenotype and its detection using Oxford nanopore equencing. Open Forum Infect Dis 2020; 7:faa180 [View Article] [PubMed]
    [Google Scholar]
  33. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  34. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  35. Andrews S. FASTQC A quality control tool for high throughput sequence data. Internet 2010 https://www.bibsonomy.org/bibtex/f230a919c34360709aa298734d63dca3 accessed 22 February 2019
    [Google Scholar]
  36. Wick RR, Judd LM, Holt KE. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol 2019; 20:129 [View Article] [PubMed]
    [Google Scholar]
  37. De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 2018; 34:2666–2669 [View Article] [PubMed]
    [Google Scholar]
  38. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  39. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  40. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  41. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 2017; 27:737–746 [View Article] [PubMed]
    [Google Scholar]
  42. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLOS ONE 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  43. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  44. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article] [PubMed]
    [Google Scholar]
  45. Xie Z, Tang H. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes. Bioinformatics 2017; 33:3340–3347 [View Article] [PubMed]
    [Google Scholar]
  46. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–6 [View Article] [PubMed]
    [Google Scholar]
  47. Carattoli A, Hasman H. Plasmidfinder and in silico pMLST: identification and typing of plasmid replicons in whole-genome sequencing (WGS). Methods Mol Biol 2020; 2075:285–294 [View Article] [PubMed]
    [Google Scholar]
  48. Grant JR, Stothard P. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res 2008; 36:W181–4 [View Article] [PubMed]
    [Google Scholar]
  49. Jolley KA, Maiden MCJ. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595 [View Article] [PubMed]
    [Google Scholar]
  50. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  51. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016; 17:132 [View Article] [PubMed]
    [Google Scholar]
  52. Abram K, Udaondo Z, Bleker C, Wanchai V, Wassenaar TM et al. Mash-based analyses of Escherichia coli genomes reveal 14 distinct phylogroups. Commun Biol 2021; 4:117 [View Article] [PubMed]
    [Google Scholar]
  53. Gilchrist CLM, Chooi Y-H. Clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 2021btab007 [View Article] [PubMed]
    [Google Scholar]
  54. Lopez-Delisle L, Rabbani L, Wolff J, Bhardwaj V, Backofen R et al. pyGenomeTracks: reproducible plots for multivariate genomic datasets. Bioinformatics 2021; 37:422–423 [View Article] [PubMed]
    [Google Scholar]
  55. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article] [PubMed]
    [Google Scholar]
  56. Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG et al. ACT: the artemis comparison tool. Bioinformatics 2005; 21:3422–3423 [View Article] [PubMed]
    [Google Scholar]
  57. Angiuoli SV, Salzberg SL. Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics 2011; 27:334–342 [View Article] [PubMed]
    [Google Scholar]
  58. Nzabarushimana E, Tang H. Insertion sequence elements-mediated structural variations in bacterial genomes. Mob DNA 2018; 9:29 [View Article] [PubMed]
    [Google Scholar]
  59. Blázquez J, Couce A, Rodríguez-Beltrán J, Rodríguez-Rojas A. Antimicrobials as promoters of genetic variation. Curr Opin Microbiol 2012; 15:561–569 [View Article] [PubMed]
    [Google Scholar]
  60. Razavi M, Kristiansson E, Flach C-F, Larsson DGJ. The association between insertion sequences and antibiotic resistance genes. mSphere 2020; 5:e00418-20 [View Article] [PubMed]
    [Google Scholar]
  61. Ross K, Varani AM, Snesrud E, Huang H, Alvarenga DO et al. TnCentral: a prokaryotic transposable element database and web portal for transposon analysis. mBio 2021; 12:e02060–21 [View Article] [PubMed]
    [Google Scholar]
  62. Kadlec K, Schwarz S. Identification of the novel dfrK-carrying transposon Tn559 in a porcine methicillin-susceptible Staphylococcus aureus ST398 strain. Antimicrob Agents Chemother 2010; 54:3475–3477 [View Article] [PubMed]
    [Google Scholar]
  63. Lee H, Doak TG, Popodi E, Foster PL, Tang H. Insertion sequence-caused large-scale rearrangements in the genome of Escherichia coli. Nucleic Acids Res 2016; 44:7109–7119 [View Article] [PubMed]
    [Google Scholar]
  64. Ward LJH, Brown JCS, Davey GP. Identification and sequence analysis of IS1297, an ISS1-like insertion sequence in a Leuconostoc strain. Gene 1996; 174:259–263 [View Article] [PubMed]
    [Google Scholar]
  65. Arias CA, Panesso D, McGrath DM, Qin X, Mojica MF et al. Genetic basis for in vivo daptomycin resistance in enterococci. N Engl J Med 2011; 365:892–900 [View Article] [PubMed]
    [Google Scholar]
  66. Campeau SA, Schuetz AN, Kohner P, Arias CA, Hemarajata P et al. Variability of daptomycin MIC values for Enterococcus faecium when measured by reference broth microdilution and gradient diffusion tests. Antimicrob Agents Chemother 2018; 62:e00745-18 [View Article] [PubMed]
    [Google Scholar]
  67. Mericl AN, Friesen JA. Comparative kinetic analysis of glycerol 3-phosphate cytidylyltransferase from Enterococcus faecalis and Listeria monocytogenes. Med Sci Monit 2012; 18:BR427–34 [View Article] [PubMed]
    [Google Scholar]
  68. Han W, Wu B, Li L, Zhao G, Woodward R et al. Defining function of lipopolysaccharide O-antigen ligase WaaL using chemoenzymatically synthesized substrates. J Biol Chem 2012; 287:5357–5365 [View Article] [PubMed]
    [Google Scholar]
  69. Cui G, Wang J, Qi X, Su J. Transcription elongation factor GreA plays a key role in cellular nvasion and virulence of Francisella tularensis subsp. novicida. Sci Rep 2018; 8:6895 [View Article] [PubMed]
    [Google Scholar]
  70. Munita JM, Mishra NN, Alvarez D, Tran TT, Diaz L et al. Failure of high-dose daptomycin for bacteremia caused by daptomycin-susceptible Enterococcus faecium harboring LiaSR substitutions. Clin Infect Dis 2014; 59:1277–1280 [View Article] [PubMed]
    [Google Scholar]
  71. Arias CA, Murray BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 2012; 10:266–278 [View Article] [PubMed]
    [Google Scholar]
  72. Kebriaei R, Rice SA, Singh KV, Stamper KC, Dinh AQ et al. Influence of inoculum effect on the efficacy of daptomycin monotherapy and in combination with β-Lactams against daptomycin-susceptible Enterococcus faecium harboring LiaSR Substitutions. Antimicrob Agents Chemother 2018; 62:e00315-18 [View Article] [PubMed]
    [Google Scholar]
  73. Derbise A, de Cespedes G, el Solh N. Nucleotide sequence of the Staphylococcus aureus transposon, Tn5405, carrying aminoglycosides resistance genes. J Basic Microbiol 1997; 37:379–384 [View Article] [PubMed]
    [Google Scholar]
  74. Werner G, Hildebrandt B, Witte W. Linkage of erm(B) and aadE-sat4-aphA-3 in multiple-resistant Enterococcus faecium isolates of different ecological origins. Microb Drug Resist 2003; 9 Suppl 1:S9–16 [View Article] [PubMed]
    [Google Scholar]
  75. Thaker MN, Kalan L, Waglechner N, Eshaghi A, Patel SN et al. Vancomycin-variable enterococci can give rise to constitutive resistance during antibiotic therapy. Antimicrob Agents Chemother 2015; 59:1405–1410 [View Article] [PubMed]
    [Google Scholar]
  76. Kohler V, Vaishampayan A, Grohmann E. Broad-host-range Inc18 plasmids: Occurrence, spread and transfer mechanisms. Plasmid 2018; 99:11–21 [View Article] [PubMed]
    [Google Scholar]
  77. Langella P, Chopin A. Conjugal transfer of plasmid pIP501 from Lactococcus lactis to Lactobacillus delbrückii subsp. bulgaricus and Lactobacillus helveticus. FEMS Microbiol Lett 1989; 51:149–152 [View Article] [PubMed]
    [Google Scholar]
  78. Thompson JK, Collins MA. Evidence for the conjugal transfer of the broad host range plasmid pIP501 into strains of Lactobacillus helveticus. J Appl Bacteriol 1988; 65:309–319 [View Article] [PubMed]
    [Google Scholar]
  79. Schaberg DR, Clewell DB, Glatzer L. Conjugative transfer of R-plasmids from Streptococcus faecalis to Staphylococcus aureus. Antimicrob Agents Chemother 1982; 22:204–207 [View Article] [PubMed]
    [Google Scholar]
  80. Zhu W, Clark N, Patel JB. pSK41-like plasmid is necessary for Inc18-like vanA plasmid transfer from Enterococcus faecalis to Staphylococcus aureus in vitro. Antimicrob Agents Chemother 2013; 57:212–219 [View Article] [PubMed]
    [Google Scholar]
  81. Mikalsen T, Pedersen T, Willems R, Coque TM, Werner G et al. Investigating the mobilome in clinically important lineages of Enterococcus faecium and Enterococcus faecalis. BMC Genomics 2015; 16:282 [View Article]
    [Google Scholar]
  82. Wang G, Yu F, Lin H, Murugesan K, Huang W et al. Evolution and mutations predisposing to daptomycin resistance in vancomycin-resistant Enterococcus faecium ST736 strains. PLoS ONE 2018; 13:e0209785 [View Article]
    [Google Scholar]
  83. He Q, Hou Q, Wang Y, Li J, Li W et al. Comparative genomic analysis of Enterococcus faecalis: insights into their environmental adaptations. BMC Genomics 2018; 19:527 [View Article] [PubMed]
    [Google Scholar]
  84. O’Driscoll T, Crank CW. Vancomycin-resistant Enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect Drug Resist 2015; 8:217–230 [View Article] [PubMed]
    [Google Scholar]
  85. Hegstad K, Mikalsen T, Coque TM, Werner G, Sundsfjord A. Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin Microbiol Infect 2010; 16:541–554 [View Article] [PubMed]
    [Google Scholar]
  86. Shankar N, Baghdayan AS, Gilmore MS. Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis. Nature 2002; 417:746–750 [View Article] [PubMed]
    [Google Scholar]
  87. Foster PL. Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol 2007; 42:373–397 [View Article] [PubMed]
    [Google Scholar]
  88. Hua-Van A, Le Rouzic A, Boutin TS, Filée J, Capy P. The struggle for life of the genome’s selfish architects. Biol Direct 2011; 6:19 [View Article] [PubMed]
    [Google Scholar]
  89. Consuegra J, Gaffé J, Lenski RE, Hindré T, Barrick JE et al. Insertion-sequence-mediated mutations both promote and constrain evolvability during a long-term experiment with bacteria. Nat Commun 2021; 12:980 [View Article] [PubMed]
    [Google Scholar]
  90. Clewell DB, Weaver KE, Dunny GM, Coque TM, Francia MV et al. eds Enterococci: From Commensals to Leading Causes of Drug Resistant Infection Boston: Massachusetts Eye and Ear Infirmary; 2014 [PubMed]
    [Google Scholar]
  91. Sohn J, Nam J-W. The present and future of de novo whole-genome assembly. Brief Bioinformatics 201823–40
    [Google Scholar]
  92. Harmer CJ, Pong CH, Hall RM. Structures bounded by directly-oriented members of the IS26 family are pseudo-compound transposons. Plasmid 2020; 111:102530 [View Article] [PubMed]
    [Google Scholar]
  93. Galas DJ, Chandler M, Berg DE, Howe MM. Mob DNA 1989
    [Google Scholar]
  94. Varani A, He S, Siguier P, Ross K, Chandler M. The IS6 family, a clinically important group of insertion sequences including IS26. Mob DNA 2021; 12:11 [View Article] [PubMed]
    [Google Scholar]
  95. Harmer CJ, Moran RA, Hall RM. Movement of IS26-associated antibiotic resistance genes occurs via a translocatable unit that includes a single IS26 and preferentially inserts adjacent to another IS26. mBio 2014; 5:e01801–14 [View Article] [PubMed]
    [Google Scholar]
  96. Harmer CJ, Hall RM. IS26-Mediated formation of transposons carrying antibiotic resistance genes. mSphere 2016; 1:e00038-16 [View Article] [PubMed]
    [Google Scholar]
  97. Karah N, Dwibedi CK, Sjöström K, Edquist P, Johansson A et al. Novel aminoglycoside resistance transposons and transposon-derived circular forms detected in carbapenem-resistant acinetobacter baumannii clinical solates. Antimicrob Agents Chemother 2016; 60:1801–1818 [View Article] [PubMed]
    [Google Scholar]
  98. Ghosh H, Doijad S, Bunk B, Falgenhauer L, Yao Y et al. Detection of translocatable units in a blaCTX-M-15 extended-spectrum β-lactamase-producing ST131 Escherichia coli isolate using a hybrid sequencing approach. Int J Antimicrob Agents 2016; 47:245–247 [View Article] [PubMed]
    [Google Scholar]
  99. Daveran-Mingot M-L, Campo N, Ritzenthaler P, Le Bourgeois P. A natural large chromosomal inversion in Lactococcus lactis is mediated by homologous recombination between two insertion sequences. J Bacteriol 1998; 180:4834–4842 [View Article] [PubMed]
    [Google Scholar]
  100. Zong Z, Partridge SR, Iredell JR. ISEcp1-mediated transposition and homologous recombination can explain the context of bla(CTX-M-62) linked to qnrB2. Antimicrob Agents Chemother 2010; 54:3039–3042 [View Article] [PubMed]
    [Google Scholar]
  101. Wang Z, Fu Y, Du X-D, Jiang H, Wang Y. Potential transferability of mcr-3 via IS26-mediated homologous recombination in Escherichia coli. Emerg Microbes Infect 2018; 7:55 [View Article] [PubMed]
    [Google Scholar]
  102. Gagnon S, Lévesque S, Lefebvre B, Bourgault A-M, Labbé A-C et al. vanA-containing Enterococcus faecium susceptible to vancomycin and teicoplanin because of major nucleotide deletions in Tn1546. J Antimicrob Chemother 2011; 66:2758–2762 [View Article] [PubMed]
    [Google Scholar]
  103. Sivertsen A, Pedersen T, Larssen KW, Bergh K, Rønning TG et al. A silenced vanA gene cluster on a transferable plasmid caused an outbreak of vancomycin-variable Enterococci. Antimicrob Agents Chemother 2016; 60:4119–4127 [View Article] [PubMed]
    [Google Scholar]
  104. Rojo-Bezares B, Estepa V, Cebollada R, de Toro M, Somalo S et al. Carbapenem-resistant Pseudomonas aeruginosa strains from a Spanish hospital: characterization of metallo-beta-lactamases, porin OprD and integrons. Int J Med Microbiol 2014; 304:405–414 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000855
Loading
/content/journal/mgen/10.1099/mgen.0.000855
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error