1887

Abstract

species are understudied members of the phylum Actinobacteria and prevalent colonizers of the human and animal upper respiratory tract and oral cavity. The oral cavity, including the palatine tonsils, is colonized by a complex microbial community, which compete for resources, actively suppress competitors and influence host physiology. We analysed genomic data from 43 new porcine isolates, together with 112 publicly available draft genome sequences of isolates from humans, animals and the environment. In all genomes, we identified biosynthetic gene clusters predicted to produce antibiotic non-ribosomal peptides, iron scavenging siderophores and other secondary metabolites that modulate microbe–microbe and potentially microbe–host interactions. overlay inhibition assays corroborated the hypothesis that specific strains produce natural antibiotics. genomes encode a large number of carbohydrate-active enzymes (CAZy), with varying CAZy activities among the species found in different hosts, host niches and environments. These findings reveal competition mechanisms and metabolic specializations linked to ecological adaptation of species in different hosts.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000854
2022-09-27
2024-07-23
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/9/mgen000854.html?itemId=/content/journal/mgen/10.1099/mgen.0.000854&mimeType=html&fmt=ahah

References

  1. Lowe BA, Marsh TL, Isaacs-Cosgrove N, Kirkwood RN, Kiupel M et al. Microbial communities in the tonsils of healthy pigs. Vet Microbiol 2011; 147:346–357 [View Article] [PubMed]
    [Google Scholar]
  2. Wilbert SA, Mark Welch JL, Borisy GG. Spatial ecology of the human tongue dorsum microbiome. Cell Rep 2020; 30:4003–4015 [View Article] [PubMed]
    [Google Scholar]
  3. Manrique P, Freire MO, Chen C, Zadeh HH, Young M et al. Perturbation of the indigenous rat oral microbiome by ciprofloxacin dosing. Mol Oral Microbiol 2013; 28:404–414 [View Article] [PubMed]
    [Google Scholar]
  4. Herder EA, Spence AR, Tingley MW, Hird SM. Elevation correlates with significant changes in relative abundance in hummingbird fecal microbiota, but composition changes little. Front Ecol Evol 2021; 8:534 [View Article]
    [Google Scholar]
  5. Palmer RJ Jr, Shah N, Valm A, Paster B, Dewhirst F et al. Interbacterial adhesion networks within early oral biofilms of single Human hosts. Appl Environ Microbiol 2017; 83:e00407-17 [View Article] [PubMed]
    [Google Scholar]
  6. Sulyanto RM, Thompson ZA, Beall CJ, Leys EJ, Griffen AL. The predominant oral microbiota is acquired early in an organized pattern. Sci Rep 2019; 9:1–8 [View Article] [PubMed]
    [Google Scholar]
  7. Pena Cortes LC, LeVeque RM, Funk J, Marsh TL, Mulks MH. Development of the tonsillar microbiome in pigs from newborn through weaning. BMC Microbiol 2018; 18:35 [View Article] [PubMed]
    [Google Scholar]
  8. Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H et al. Rothia aeria sp. nov., Rhodococcus baikonurensis sp. nov. and Arthrobacter russicus sp. nov., isolated from air in the Russian space laboratory Mir. Int J Syst Evol Microbiol 2004; 54:827–835 [View Article]
    [Google Scholar]
  9. Kämpfer P, Kleinhagauer T, Busse H-J, Klug K, Jäckel U et al. Rothia aerolata sp. nov., isolated from exhaust air of a pig barn. Int J Syst Evol Microbiol 2016; 66:3102–3107 [View Article] [PubMed]
    [Google Scholar]
  10. Fan Y, Jin Z, Tong J, Li W, Pasciak M et al. Rothia amarae sp. nov., from sludge of a foul water sewer. Int J Syst Evol Microbiol 2002; 52:2257–2260 [View Article] [PubMed]
    [Google Scholar]
  11. Ko KS, Lee MY, Park YK, Peck KR, Song J-H. Molecular identification of clinical Rothia isolates from Human patients: proposal of a Novel Rothia species, Rothia arfidiae sp. nov. J Bacteriol Virol 2009; 39:159 [View Article]
    [Google Scholar]
  12. Georg LK, Brown JM. Rothia, gen. nov. an aerobic genus of the family Actinomycetaceae. International Journal of Systematic Bacteriology 1967; 17:79–88 [View Article]
    [Google Scholar]
  13. Xiong Z-J, Zhang J-L, Zhang D-F, Zhou Z-L, Liu M-J et al. Rothia endophytica sp. nov., an actinobacterium isolated from Dysophylla stellata (Lour.) Benth. Int J Syst Evol Microbiol 2013; 63:3964–3969 [View Article] [PubMed]
    [Google Scholar]
  14. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the Phylum Actinobacteria. Front Microbiol 2018; 9:2007 [View Article] [PubMed]
    [Google Scholar]
  15. Liu Z-X, Yang L-L, Huang Y, Zhao H, Liu H et al. Rothia marina sp. nov., isolated from an intertidal sediment of the South China Sea. Antonie Van Leeuwenhoek 2013; 104:331–337 [View Article] [PubMed]
    [Google Scholar]
  16. Collins MD, Hutson RA, Båverud V, Falsen E. Characterization of a Rothia-like organism from a mouse: description of Rothia nasimurium sp. nov. and reclassification of Stomatococcus mucilaginosus as Rothia mucilaginosa comb. nov. Int J Syst Evol Microbiol 2000; 50 Pt 3:1247–1251 [View Article]
    [Google Scholar]
  17. Schlattmann A, von Lützau K, Kaspar U, Becker K. Rothia nasisuis’ sp. nov., ‘Dermabacter porcinasus’ sp. nov., ‘Propionibacterium westphaliense’ sp. nov. and ‘Tessaracoccus nasisuum’ sp. nov., isolated from porcine nasal swabs in the Münster region, Germany. New Microbes New Infect 2018; 26:114–117 [View Article]
    [Google Scholar]
  18. Chou Y-J, Chou J-H, Lin K-Y, Lin M-C, Wei Y-H et al. Rothia terrae sp. nov. isolated from soil in Taiwan. Int J Syst Evol Microbiol 2008; 58:84–88 [View Article] [PubMed]
    [Google Scholar]
  19. Baker JL, Morton JT, Dinis M, Alvarez R, Tran NC et al. Deep metagenomics examines the oral microbiome during dental caries, revealing novel taxa and co-occurrences with host molecules. Genome Res 2021; 31:64–74 [View Article] [PubMed]
    [Google Scholar]
  20. Agnello M, Marques J, Cen L, Mittermuller B, Huang A et al. Microbiome associated with severe caries in Canadian First Nations children. J Dent Res 2017; 96:1378–1385 [View Article] [PubMed]
    [Google Scholar]
  21. Gomez A, Espinoza JL, Harkins DM, Leong P, Saffery R et al. Host Genetic Control of the Oral Microbiome in Health and Disease. Cell Host Microbe 2017; 22:269–278 [View Article] [PubMed]
    [Google Scholar]
  22. Ihara Y, Takeshita T, Kageyama S, Matsumi R, Asakawa M et al. Identification of initial colonizing bacteria in dental plaques from young adults using full-length 16S rRNA Gene Sequencing. mSystems 2019; 4:e00360-19 [View Article] [PubMed]
    [Google Scholar]
  23. Khan ST, Ahamed M, Musarrat J, Al-Khedhairy AA. Anti-biofilm and antibacterial activities of zinc oxide nanoparticles against the oral opportunistic pathogens Rothia dentocariosa and Rothia mucilaginosa. Eur J Oral Sci 2014; 122:397–403 [View Article] [PubMed]
    [Google Scholar]
  24. Gaiser RA. Antimicrobial Peptides and the Interplay Between Microbes and Host: Towards Preventing Porcine Infections with Streptococcus suis Wageningen University and Research; 2016
    [Google Scholar]
  25. Wang L, Ravichandran V, Yin Y, Yin J, Zhang Y. Natural products from mammalian gut microbiota. Trends Biotechnol 2019; 37:492–504 [View Article] [PubMed]
    [Google Scholar]
  26. Letzel A-C, Pidot SJ, Hertweck C. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria. BMC Genomics 2014; 15:983 [View Article] [PubMed]
    [Google Scholar]
  27. Miller BR, Gulick AM. Structural biology of nonribosomal peptide synthetases. Nonribosomal Peptide and Polyketide Biosynthesis: Springer 20163–29
    [Google Scholar]
  28. Gulick AM. Nonribosomal peptide synthetase biosynthetic clusters of ESKAPE pathogens. Nat Prod Rep 2017; 34:981–1009 [View Article] [PubMed]
    [Google Scholar]
  29. Hertweck C. The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Engl 2009; 48:4688–4716 [View Article] [PubMed]
    [Google Scholar]
  30. Drula E, Garron M-L, Dogan S, Lombard V, Henrissat B et al. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res 2022; 50:D571–D577 [View Article] [PubMed]
    [Google Scholar]
  31. Onyango SO, Juma J, De Paepe K, Van de Wiele T. Oral and gut microbial carbohydrate-active enzymes landscape in health and disease. Front Microbiol 2021; 12:653448 [View Article] [PubMed]
    [Google Scholar]
  32. Rosier BT, Takahashi N, Zaura E, Krom BP, MartÍnez-Espinosa RM et al. The importance of nitrate reduction for oral health. J Dent Res 2022; 2022:220345221080982 [View Article] [PubMed]
    [Google Scholar]
  33. Sato-Suzuki Y, Washio J, Wicaksono DP, Sato T, Fukumoto S et al. Nitrite-producing oral microbiome in adults and children. Sci Rep 2020; 10:16652 [View Article] [PubMed]
    [Google Scholar]
  34. Lundberg JO, Carlström M, Weitzberg E. Metabolic effects of dietary nitrate in health and disease. Cell Metab 2018; 28:9–22 [View Article] [PubMed]
    [Google Scholar]
  35. Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 2009; 7:99–109 [View Article] [PubMed]
    [Google Scholar]
  36. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020; 75:3491–3500 [View Article] [PubMed]
    [Google Scholar]
  37. Pereira AC, Cunha MV. An effective culturomics approach to study the gut microbiota of mammals. Res Microbiol 2020; 171:290–300 [View Article] [PubMed]
    [Google Scholar]
  38. Lagier J-C, Dubourg G, Million M, Cadoret F, Bilen M et al. Culturing the human microbiota and culturomics. Nat Rev Microbiol 2018; 16:540–550 [View Article] [PubMed]
    [Google Scholar]
  39. Hockett KL, Baltrus DA. Use of the soft-agar overlay technique to screen for bacterially produced inhibitory compounds. J Vis Exp 2017; 2017:119 [View Article] [PubMed]
    [Google Scholar]
  40. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  41. Souvorov A, Agarwala R, Lipman DJ. SKESA: strategic k-mer extension for scrupulous assemblies. Genome Biol 2018; 19:153 [View Article] [PubMed]
    [Google Scholar]
  42. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  43. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  44. Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. Ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 2017; 8:28–36
    [Google Scholar]
  45. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article] [PubMed]
    [Google Scholar]
  46. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article] [PubMed]
    [Google Scholar]
  47. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  48. Navarro-Muñoz JC, Selem-Mojica N, Mullowney MW, Kautsar SA, Tryon JH et al. A computational framework to explore large-scale biosynthetic diversity. Nat Chem Biol 2020; 16:60–68 [View Article] [PubMed]
    [Google Scholar]
  49. Lopes CT, Franz M, Kazi F, Donaldson SL, Morris Q et al. Cytoscape Web: an interactive web-based network browser. Bioinformatics 2010; 26:2347–2348 [View Article] [PubMed]
    [Google Scholar]
  50. Gilchrist CLM, Chooi Y-H. Clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 2021; 37:2473–2475 [View Article] [PubMed]
    [Google Scholar]
  51. Rosier BT, Moya-Gonzalvez EM, Corell-Escuin P, Mira A. Isolationand characterization of nitrate-reducing bacteria as potential probiotics for oral and systemic health. Front Microbiol 2020; 11:555465 [View Article] [PubMed]
    [Google Scholar]
  52. Esmaeel Q, Pupin M, Jacques P, Leclère V. Nonribosomal peptides and polyketides of Burkholderia: new compounds potentially implicated in biocontrol and pharmaceuticals. Environ Sci Pollut Res Int 2018; 25:29794–29807 [View Article] [PubMed]
    [Google Scholar]
  53. Ishaque NM, Burgsdorf I, Limlingan Malit JJ, Saha S, Teta R et al. Isolation, genomic and metabolomic characterization of Streptomyces tendae VITAKN with quorum sensing inhibitory activity from Southern India. Microorganisms 2020; 8:121 [View Article] [PubMed]
    [Google Scholar]
  54. Huang S, Liu Y, Liu W-Q, Neubauer P, Li J. The nonribosomal peptide valinomycin: from discovery to bioactivity and biosynthesis. Microorganisms 2021; 9:780 [View Article] [PubMed]
    [Google Scholar]
  55. Gaiser RA, Medema MH, Kleerebezem M, van Baarlen P, Wells JM. Draft genome sequence of a porcine commensal, Rothia nasimurium, encoding a nonribosomal peptide synthetase predicted to produce the ionophore antibiotic valinomycin. Genome Announc 2017; 5:17 [View Article]
    [Google Scholar]
  56. Uranga CC, Arroyo Jr P, Duggan BM, Gerwick WH, Edlund A et al. Commensal oral rothia mucilaginosa produces enterobactin, a metal-chelating siderophore. mSystems 2020; 5:e00161-20 [View Article]
    [Google Scholar]
  57. Ganz T. Iron and infection. Int J Hematol 2018; 107:7–15 [View Article] [PubMed]
    [Google Scholar]
  58. Uranga CC, Arroyo P, Duggan BM, Gerwick WH, Edlund A. Commensal oral Rothia mucilaginosa produces enterobactin, a metal-chelating siderophore. mSystems 2020; 5:e00161-20 [View Article] [PubMed]
    [Google Scholar]
  59. Gasparrini AJ, Markley JL, Kumar H, Wang B, Fang L et al. Tetracycline-inactivating enzymes from environmental, human commensal, and pathogenic bacteria cause broad-spectrum tetracycline resistance. Commun Biol 2020; 3:241 [View Article] [PubMed]
    [Google Scholar]
  60. Zainab SM, Junaid M, Xu N, Malik RN. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: a global review on dissemination, sources, interactions, environmental and human health risks. Water Res 2020; 187:116455 [View Article] [PubMed]
    [Google Scholar]
  61. Weijers C, Franssen MCR, Visser GM. Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnol Adv 2008; 26:436–456 [View Article]
    [Google Scholar]
  62. Losey HC, Peczuh MW, Chen Z, Eggert US, Dong SD et al. Tandem action of glycosyltransferases in the maturation of vancomycin and teicoplanin aglycones: novel glycopeptides. Biochemistry 2001; 40:4745–4755 [View Article]
    [Google Scholar]
  63. Cantarel BL, Lombard V, Henrissat B. Complex carbohydrate utilization by the healthy human microbiome. PLoS One 2012; 7:e28742 [View Article] [PubMed]
    [Google Scholar]
  64. Cruz-Aldaco K, Govea-Salas M, Gomes-Araujo R, Dávila-Medina MD, Loredo-Trevino A. Bbioactivities of bacterial polysaccharidesbioactivities of bacterial polysaccharides; 2021
  65. Lairson LL, Henrissat B, Davies GJ, Withers SG. Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 2008; 77:521–555 [View Article]
    [Google Scholar]
  66. Lin F, Li C, Chen Z. Exopolysaccharide-derived carbon dots for microbial viability assessment. Front Microbiol 2018; 9:2697 [View Article] [PubMed]
    [Google Scholar]
  67. Marvasi M, Visscher PT, Casillas Martinez L. Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis. FEMS Microbiol Lett 2010; 313:1–9 [View Article] [PubMed]
    [Google Scholar]
  68. Heine RG, AlRefaee F, Bachina P, De Leon JC, Geng L et al. Lactose intolerance and gastrointestinal cow’s milk allergy in infants and children - common misconceptions revisited. World Allergy Organ J 2017; 10:41 [View Article] [PubMed]
    [Google Scholar]
  69. Van Herreweghen F, De Paepe K, Roume H, Kerckhof F-M, Van de Wiele T. Mucin degradation niche as a driver of microbiome composition and Akkermansia muciniphila abundance in a dynamic gut model is donor independent. FEMS Microbiol Ecol 2018; 94:12 [View Article] [PubMed]
    [Google Scholar]
  70. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012; 3:289–306 [View Article] [PubMed]
    [Google Scholar]
  71. Humann J, Lenz LL. Bacterial peptidoglycan degrading enzymes and their impact on host muropeptide detection. J Innate Immun 2009; 1:88–97 [View Article] [PubMed]
    [Google Scholar]
  72. Sakaguchi M. Diverse and common features of trehalases and their contributions to microbial trehalose metabolism. Appl Microbiol Biotechnol 2020; 104:1837–1847 [View Article] [PubMed]
    [Google Scholar]
  73. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 2004; 382:769–781 [View Article] [PubMed]
    [Google Scholar]
  74. Pham M-L, Tran A-M, Kittibunchakul S, Nguyen T-T, Mathiesen G et al. Immobilization of β-Galactosidases on the Lactobacillus cell surface using the peptidoglycan-binding Motif LysM. Catalysts 2019; 9:443 [View Article] [PubMed]
    [Google Scholar]
  75. Tzelepis G, Karlsson M. Killer toxin-like chitinases in filamentous fungi: structure, regulation and potential roles in fungal biology. Fungal Biol Rev 2019; 33:123–132 [View Article]
    [Google Scholar]
  76. Singh K, Upadhyay SK. ShumaylaMadhu LysM domain-containing proteins modulate stress response and signalling in Triticum aestivum L. Environ Exp Bot 2021; 189:104558 [View Article]
    [Google Scholar]
  77. Spaink HP. Specific recognition of bacteria by plant LysM domain receptor kinases. Trends Microbiol 2004; 12:201–204 [View Article] [PubMed]
    [Google Scholar]
  78. Pereira FC, Nunes F, Cruz F, Fernandes C, Isidro AL et al. A LysM domain intervenes in sequential protein-protein and protein-peptidoglycan interactions important for spore coat assembly in Bacillus subtilis. J Bacteriol 2019; 201:e00642-18 [View Article] [PubMed]
    [Google Scholar]
  79. Gao B, Gallagher T, Zhang Y, Elbadawi-Sidhu M, Lai Z et al. Tracking polymicrobial metabolism in cystic fibrosis airways: Pseudomonas aeruginosa metabolism and physiology are influenced by Rothia mucilaginosa-derived metabolites. mSphere 2018; 3:e00151-18 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000854
Loading
/content/journal/mgen/10.1099/mgen.0.000854
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error