1887

Abstract

Emerging evidence has identified viral circular RNAs (circRNAs) in human cells infected by viruses, interfering with the immune system and inducing diseases including human cancer. However, the biogenesis and regulatory mechanisms of virus-encoded circRNAs in host cells remain unknown. In this study, we used the circRNA detection tool CIRI2 to systematically determine the virus-encoded circRNAs in virus-infected cancer cell lines and cancer patients, by analysing RNA-Seq datasets derived from RNase R-treated samples. Based on the thousands of viral circRNAs we identified, the biological characteristics and potential roles of viral circRNAs in regulating host cell function were determined. In addition, we developed a Viral-circRNA Database (http://www.hywanglab.cn/vcRNAdb/), which is open to all users to search, browse and download information on circRNAs encoded by viruses upon infection.

Funding
This study was supported by the:
  • National Key Research and Development Program (Award 2017YFC0908500)
    • Principle Award Recipient: HaiyunWang
  • National Natural Science Foundation of China (Award 31771469)
    • Principle Award Recipient: HaiyunWang
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000848
2022-06-22
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/6/mgen000848.html?itemId=/content/journal/mgen/10.1099/mgen.0.000848&mimeType=html&fmt=ahah

References

  1. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature 2017; 541:321–330 [View Article] [PubMed]
    [Google Scholar]
  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71:209–249 [View Article] [PubMed]
    [Google Scholar]
  3. de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health 2020; 8:e180–e190 [View Article] [PubMed]
    [Google Scholar]
  4. Cohen JI. Epstein-Barr virus infection. N Engl J Med 2000; 343:481–492 [View Article] [PubMed]
    [Google Scholar]
  5. Farrell PJ. Epstein-Barr virus and cancer. Annu Rev Pathol 2019; 14:29–53 [View Article] [PubMed]
    [Google Scholar]
  6. Oksenhendler E, Boutboul D, Galicier L. Kaposi sarcoma-associated herpesvirus/human herpesvirus 8-associated lymphoproliferative disorders. Blood 2019; 133:1186–1190 [View Article] [PubMed]
    [Google Scholar]
  7. Marshall VA, Labo N, Hao X-P, Holdridge B, Thompson M et al. Gammaherpesvirus infection and malignant disease in rhesus macaques experimentally infected with SIV or SHIV. PLoS Pathog 2018; 14:e1007130 [View Article] [PubMed]
    [Google Scholar]
  8. Araldi RP, Sant’Ana TA, Módolo DG, de Melo TC, Spadacci-Morena DD et al. The human papillomavirus (HPV)-related cancer biology: An overview. Biomed Pharmacother 2018; 106:1537–1556 [View Article] [PubMed]
    [Google Scholar]
  9. Taberna M, Mena M, Pavón MA, Alemany L, Gillison ML et al. Human papillomavirus-related oropharyngeal cancer. Ann Oncol 2017; 28:2386–2398 [View Article] [PubMed]
    [Google Scholar]
  10. Leemans CR, Braakhuis BJM, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer 2011; 11:9–22 [View Article] [PubMed]
    [Google Scholar]
  11. Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 1979; 280:339–340 [View Article] [PubMed]
    [Google Scholar]
  12. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 2014; 56:55–66 [View Article] [PubMed]
    [Google Scholar]
  13. Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol 2014; 32:453–461 [View Article] [PubMed]
    [Google Scholar]
  14. Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A 1976; 73:3852–3856 [View Article] [PubMed]
    [Google Scholar]
  15. Capel B, Swain A, Nicolis S, Hacker A, Walter M et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 1993; 73:1019–1030 [View Article] [PubMed]
    [Google Scholar]
  16. Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features of circular RNA expression. PLoS Genet 2013; 9:e1003777 [View Article] [PubMed]
    [Google Scholar]
  17. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013; 19:141–157 [View Article] [PubMed]
    [Google Scholar]
  18. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495:384–388 [View Article] [PubMed]
    [Google Scholar]
  19. Li Z, Huang C, Bao C, Chen L, Lin M et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 2015; 22:256–264 [View Article] [PubMed]
    [Google Scholar]
  20. Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 2017; 66:22–37 [View Article] [PubMed]
    [Google Scholar]
  21. Zhang Z, Yang T, Xiao J. Circular rnas: promising biomarkers for human diseases. EBioMedicine 2018; 34:267–274 [View Article]
    [Google Scholar]
  22. Toptan T, Abere B, Nalesnik MA, Swerdlow SH, Ranganathan S et al. Circular DNA tumor viruses make circular RNAs. Proc Natl Acad Sci USA 2018; 115:E8737–e45 [View Article] [PubMed]
    [Google Scholar]
  23. Ungerleider NA, Jain V, Wang Y, Maness NJ, Blair RV et al. Comparative analysis of gammaherpesvirus circular RNA Repertoires: conserved and unique viral circular RNAs. J Virol 2019; 93: [View Article] [PubMed]
    [Google Scholar]
  24. Tagawa T, Gao S, Koparde VN, Gonzalez M, Spouge JL et al. Discovery of Kaposi’s sarcoma herpesvirus-encoded circular RNAs and a human antiviral circular RNA. Proc Natl Acad Sci USA 2018; 115:12805–12810 [View Article] [PubMed]
    [Google Scholar]
  25. Abere B, Li J, Zhou H, Toptan T, Moore PS et al. Kaposi’s sarcoma-associated herpesvirus-encoded circRNAs are expressed in infected tumor tissues and are incorporated into virions. mBio 2020; 11: [View Article] [PubMed]
    [Google Scholar]
  26. Ungerleider N, Concha M, Lin Z, Roberts C, Wang X et al. The Epstein Barr virus circRNAome. PLoS Pathog 2018; 14:e1007206 [View Article] [PubMed]
    [Google Scholar]
  27. Zhao J, Lee EE, Kim J, Yang R, Chamseddin B et al. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat Commun 2019; 10: [View Article]
    [Google Scholar]
  28. Sekiba K, Otsuka M, Ohno M, Kishikawa T, Yamagami M et al. DHX9 regulates production of hepatitis B virus-derived circular RNA and viral protein levels. Oncotarget 2018; 9:20953–20964 [View Article] [PubMed]
    [Google Scholar]
  29. Qiao Y, Zhao X, Liu J, Yang W. Epstein-Barr virus circRNAome as host miRNA sponge regulates virus infection, cell cycle, and oncogenesis. Bioengineered 2019; 10:593–603 [View Article] [PubMed]
    [Google Scholar]
  30. Yang Y, Fan X, Mao M, Song X, Wu P et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 2017; 27:626–641 [View Article]
    [Google Scholar]
  31. Hansen TB, Venø MT, Damgaard CK, Kjems J. Comparison of circular RNA prediction tools. Nucleic Acids Res 2016; 44:e58 [View Article] [PubMed]
    [Google Scholar]
  32. Zeng X, Lin W, Guo M, Zou Q. A comprehensive overview and evaluation of circular RNA detection tools. PLoS Comput Biol 2017; 13:e1005420 [View Article] [PubMed]
    [Google Scholar]
  33. Gao Y, Wang J, Zhao F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol 2015; 16:4 [View Article] [PubMed]
    [Google Scholar]
  34. Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL et al. Complementary sequence-mediated exon circularization. Cell 2014; 159:134–147 [View Article] [PubMed]
    [Google Scholar]
  35. Szabo L, Morey R, Palpant NJ, Wang PL, Afari N et al. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol 2015; 16:126 [View Article] [PubMed]
    [Google Scholar]
  36. Gao Y, Zhang J, Zhao F. Circular RNA identification based on multiple seed matching. Brief Bioinform 2018; 19:803–810 [View Article] [PubMed]
    [Google Scholar]
  37. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495:333–338 [View Article] [PubMed]
    [Google Scholar]
  38. Westholm JO, Miura P, Olson S, Shenker S, Joseph B et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 2014; 9:1966–1980 [View Article] [PubMed]
    [Google Scholar]
  39. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res 2013; 41:D991–5 [View Article] [PubMed]
    [Google Scholar]
  40. Kodama Y, Shumway M, Leinonen R. International Nucleotide Sequence Database Collaboration The Sequence Read Archive: explosive growth of sequencing data. Nucleic Acids Res 2012; 40:D54–6 [View Article] [PubMed]
    [Google Scholar]
  41. S A FastQC A Quality Control Tool for High Throughput Sequence Data; 2010 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
  42. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  43. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011; 27:863–864 [View Article] [PubMed]
    [Google Scholar]
  44. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res 2019; 47:D155–D162 [View Article] [PubMed]
    [Google Scholar]
  45. Enright AJ, John B, Gaul U, Tuschl T, Sander C et al. MicroRNA targets in Drosophila. Genome Biol 2003; 5:R1 [View Article] [PubMed]
    [Google Scholar]
  46. Ding J, Li X, Hu H. TarPmiR: a new approach for microRNA target site prediction. Bioinformatics 2016; 32:2768–2775 [View Article] [PubMed]
    [Google Scholar]
  47. Su G, Morris JH, Demchak B, Bader GD. Biological network exploration with cytoscape 3. Current Protocols in Bioinformatics 2014; 47:1–24 [View Article]
    [Google Scholar]
  48. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015; 4: [View Article] [PubMed]
    [Google Scholar]
  49. Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res 2020; 48:D127–D131 [View Article] [PubMed]
    [Google Scholar]
  50. Huang H-Y, Lin Y-C-D, Li J, Huang K-Y, Shrestha S et al. miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res 2020; 48:D148–D154 [View Article] [PubMed]
    [Google Scholar]
  51. Gene Ontology Consortium Gene Ontology Consortium: going forward. Nucleic Acids Res 2015; 43:D1049–56 [View Article] [PubMed]
    [Google Scholar]
  52. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44:D457–62 [View Article] [PubMed]
    [Google Scholar]
  53. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012; 16:284–287 [View Article] [PubMed]
    [Google Scholar]
  54. Gu Z, Gu L, Eils R, Schlesner M, Brors B. circlize Implements and enhances circular visualization in R. Bioinformatics 2014; 30:2811–2812 [View Article] [PubMed]
    [Google Scholar]
  55. Ungerleider N, Flemington E. SpliceV: analysis and publication quality printing of linear and circular RNA splicing, expression and regulation. BMC Bioinformatics 2019; 20:231 [View Article] [PubMed]
    [Google Scholar]
  56. Hahne DS, Ivanek R, Mueller A, Lianoglou S, Tan G. Gviz: plotting data and annotation information along genomic coordinates. R package version 1.6.0 ed2014.
  57. Rivailler P, Jiang H, Cho Y, Quink C, Wang F. Complete nucleotide sequence of the rhesus lymphocryptovirus: genetic validation for an Epstein-Barr virus animal model. J Virol 2002; 76:421–426 [View Article] [PubMed]
    [Google Scholar]
  58. Liu Q, Shuai M, Xia Y. Knockdown of EBV-encoded circRNA circRPMS1 suppresses nasopharyngeal carcinoma cell proliferation and metastasis through sponging multiple miRNAs. Cancer Manag Res 2019; 11:8023–8031 [View Article] [PubMed]
    [Google Scholar]
  59. McKenzie J, El-Guindy A. Epstein-barr virus lytic cycle reactivation. Curr Top Microbiol Immunol 2015; 391:237–261 [View Article] [PubMed]
    [Google Scholar]
  60. Kanda T. EBV-encoded latent genes. Adv Exp Med Biol 2018; 1045:377–394 [View Article] [PubMed]
    [Google Scholar]
  61. Yan L, Majerciak V, Zheng ZM, Lan K. Towards better understanding of KSHV life cycle: from transcription and posttranscriptional regulations to pathogenesis. Virol Sin 2019; 34:135–161 [View Article] [PubMed]
    [Google Scholar]
  62. Conrad NK. New insights into the expression and functions of the Kaposi’s sarcoma-associated herpesvirus long noncoding PAN RNA. Virus Res 2016; 212:53–63 [View Article] [PubMed]
    [Google Scholar]
  63. Fang Z, Ruan B, Zhong M, Xiong J, Jiang Y et al. Silencing LINC00491 inhibits pancreatic cancer progression through MiR-188-5p-induced inhibition of ZFP91. J Cancer 2022; 13:1808–1819 [View Article] [PubMed]
    [Google Scholar]
  64. Niu H, Qu A, Guan C. Suppression of MGAT3 expression and the epithelial-mesenchymal transition of lung cancer cells by miR-188-5p. Biomed J 2021; 44:678–685 [View Article] [PubMed]
    [Google Scholar]
  65. Jeong S, Kim SA, Ahn SG. HOXC6-Mediated miR-188-5p expression induces cell migration through the inhibition of the tumor suppressor FOXN2. Int J Mol Sci 2021; 23:9 [View Article] [PubMed]
    [Google Scholar]
  66. Ruf WP, Freischmidt A, Grozdanov V, Roth V, Brockmann SJ et al. Protein binding partners of dysregulated miRNAs in Parkinson’s Disease Serum. Cells 2021; 10:791 [View Article] [PubMed]
    [Google Scholar]
  67. Santiago JA, Potashkin JA. Network-based metaanalysis identifies HNF4A and PTBP1 as longitudinally dynamic biomarkers for Parkinson’s disease. Proc Natl Acad Sci U S A 2015; 112:2257–2262 [View Article] [PubMed]
    [Google Scholar]
  68. Gungormez C, Gumushan Aktas H, Dilsiz N, Borazan E. Novel miRNAs as potential biomarkers in stage II colon cancer: microarray analysis. Mol Biol Rep 2019; 46:4175–4183 [View Article] [PubMed]
    [Google Scholar]
  69. Sola I, Almazán F, Zúñiga S, Enjuanes L. Continuous and discontinuous RNA synthesis in coronaviruses. Annu Rev Virol 2015; 2:265–288 [View Article] [PubMed]
    [Google Scholar]
  70. Cai Z, Fan Y, Zhang Z, Lu C, Zhu Z et al. VirusCircBase: a database of virus circular RNAs. Brief Bioinform 2021; 22:2182–2190 [View Article] [PubMed]
    [Google Scholar]
  71. Zhou WY, Cai ZR, Liu J, Wang DS, Ju HQ et al. Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer 2020; 19:172 [View Article] [PubMed]
    [Google Scholar]
  72. Zhang Y, Zhang X-O, Chen T, Xiang J-F, Yin Q-F et al. Circular intronic long noncoding RNAs. Mol Cell 2013; 51:792–806 [View Article] [PubMed]
    [Google Scholar]
  73. Miyagawa R, Tano K, Mizuno R, Nakamura Y, Ijiri K et al. Identification of cis- and trans-acting factors involved in the localization of MALAT-1 noncoding RNA to nuclear speckles. RNA 2012; 18:738–751 [View Article] [PubMed]
    [Google Scholar]
  74. Pisani G, Baron B. Nuclear paraspeckles function in mediating gene regulatory and apoptotic pathways. Noncoding RNA Res 2019; 4:128–134 [View Article] [PubMed]
    [Google Scholar]
  75. Zhuang M, Zhao S, Jiang Z, Wang S, Sun P et al. MALAT1 sponges miR-106b-5p to promote the invasion and metastasis of colorectal cancer via SLAIN2 enhanced microtubules mobility. EBioMedicine 2019; 41:286–298 [View Article] [PubMed]
    [Google Scholar]
  76. Chen YG, Kim MV, Chen X, Batista PJ, Aoyama S et al. Sensing self and foreign circular RNAs by intron identity. Mol Cell 2017; 67:228–238 [View Article] [PubMed]
    [Google Scholar]
  77. Liu C-X, Li X, Nan F, Jiang S, Gao X et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 2019; 177:865–880 [View Article] [PubMed]
    [Google Scholar]
  78. Fung TS, Liu DX. Human coronavirus: host-pathogen interaction. Annu Rev Microbiol 2019; 73:529–557 [View Article] [PubMed]
    [Google Scholar]
  79. Romero-López C, Berzal-Herranz A. A long-range RNA-RNA interaction between the 5’ and 3’ ends of the HCV genome. RNA 2009; 15:1740–1752 [View Article] [PubMed]
    [Google Scholar]
  80. Villordo SM, Gamarnik AV. Genome cyclization as strategy for flavivirus RNA replication. Virus Res 2009; 139:230–239 [View Article] [PubMed]
    [Google Scholar]
  81. Herold J, Andino R. Poliovirus RNA replication requires genome circularization through a protein-protein bridge. Mol Cell 2001; 7:581–591 [View Article] [PubMed]
    [Google Scholar]
  82. Lo CY, Tsai TL, Lin CN, Lin CH, Wu HY. Interaction of coronavirus nucleocapsid protein with the 5’- and 3’-ends of the coronavirus genome is involved in genome circularization and negative-strand RNA synthesis. FEBS J 2019; 286:3222–3239 [View Article] [PubMed]
    [Google Scholar]
  83. Masters PS. The molecular biology of coronaviruses. Adv Virus Res 2006; 66:193–292 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000848
Loading
/content/journal/mgen/10.1099/mgen.0.000848
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error