1887

Abstract

the causative agent of Chagas disease shows a marked genetic diversity and divided into at least six Discrete Typing Units (DTUs). High intra genetic variability has been observed in the TcI DTU, the most widely distributed DTU, where patterns of genomic diversity can provide information on ecological and evolutionary processes driving parasite population structure and genome organization. Chromosomal aneuploidies and rearrangements across multigene families represent an evidence of genome plasticity. We explored genomic diversity among 18 Colombian I clones and 15 . I South American strains. Our results confirm high genomic variability, heterozygosity and presence of a clade compatible with the TcI genotype, described for strains from humans in Colombia and Venezuela. TcI showed high structural plasticity across the geographical region studied. Differential events of whole and segmental aneuploidy (SA) along chromosomes even between clones from the same strain were found and corroborated by the depth and allelic frequency. We detected loss of heterozygosity (LOH) events in different chromosomes, however, the size and location of segments under LOH varied between clones. Genes adjacent to breakpoints were evaluated, and retrotransposon hot spot genes flanked the beginning of segmental aneuploidies. Our results suggest that genomes, like those of , may have a highly unstable structure and there is now an urgent need to design experiments to explore any potential adaptive role for the plasticity observed.

Funding
This study was supported by the:
  • Pew Charitable Trusts (Award Latinamerican fellow)
    • Principle Award Recipient: JUANDAVID RAMIREZ
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000843
2022-06-24
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/6/mgen000843.html?itemId=/content/journal/mgen/10.1099/mgen.0.000843&mimeType=html&fmt=ahah

References

  1. World Health Organization Chagas Disease; 2019 https://www.who.int/health-topics/chagas-disease#tab=tab_1
  2. Zingales B, Andrade SG, Briones MRS, Campbell DA, Chiari E et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 2009; 104:1051–1054 [View Article] [PubMed]
    [Google Scholar]
  3. Zingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM et al. The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol 2012; 12:240–253 [View Article] [PubMed]
    [Google Scholar]
  4. Zingales B. Trypanosoma cruzi genetic diversity: Something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Trop 2018; 184:38–52 [View Article] [PubMed]
    [Google Scholar]
  5. Ramírez JD, Guhl F, Messenger LA, Lewis MD, Montilla M et al. Contemporary cryptic sexuality in Trypanosoma cruzi. Mol Ecol 2012; 21:4216–4226 [View Article] [PubMed]
    [Google Scholar]
  6. Ramírez JD, Tapia-Calle G, Guhl F. Genetic structure of Trypanosoma cruzi in Colombia revealed by a High-throughput Nuclear Multilocus Sequence Typing (nMLST) approach. BMC Genet 2013; 14:96 [View Article] [PubMed]
    [Google Scholar]
  7. Herrera C, Bargues MD, Fajardo A, Montilla M, Triana O et al. Identifying four Trypanosoma cruzi I isolate haplotypes from different geographic regions in Colombia. Infect Genet Evol 2007; 7:535–539 [View Article] [PubMed]
    [Google Scholar]
  8. Herrera C, Guhl F, Falla A, Fajardo A, Montilla M et al. Genetic variability and phylogenetic relationships within Trypanosoma cruzi I isolated in colombia based on miniexon gene sequences. J Parasitol Res 2009; 2009:897364 [View Article] [PubMed]
    [Google Scholar]
  9. Llewellyn MS, Rivett-Carnac JB, Fitzpatrick S, Lewis MD, Yeo M et al. Extraordinary Trypanosoma cruzi diversity within single mammalian reservoir hosts implies a mechanism of diversifying selection. Int J Parasitol 2011; 41:609–614 [View Article] [PubMed]
    [Google Scholar]
  10. León CM, Hernández C, Montilla M, Ramírez JD. Retrospective distribution of Trypanosoma cruzi I genotypes in Colombia. Mem Inst Oswaldo Cruz 2015; 110:387–393 [View Article] [PubMed]
    [Google Scholar]
  11. Ramírez JD, Montilla M, Cucunubá ZM, Floréz AC, Zambrano P et al. Molecular epidemiology of human oral Chagas disease outbreaks in Colombia. PLoS Negl Trop Dis 2013; 7:e2041 [View Article] [PubMed]
    [Google Scholar]
  12. Dvorak JA, Hall TE, Crane MS, Engel JC, McDaniel JP et al. Trypanosoma cruzi: flow cytometric analysis. I. Analysis of total DNA/organism by means of mithramycin-induced fluorescence. J Protozool 1982; 29:430–437 [View Article] [PubMed]
    [Google Scholar]
  13. Lewis MD, Llewellyn MS, Gaunt MW, Yeo M, Carrasco HJ et al. Flow cytometric analysis and microsatellite genotyping reveal extensive DNA content variation in Trypanosoma cruzi populations and expose contrasts between natural and experimental hybrids. Int J Parasitol 2009; 39:1305–1317 [View Article] [PubMed]
    [Google Scholar]
  14. Minning TA, Weatherly DB, Flibotte S, Tarleton RL. Widespread, focal copy number variations (CNV) and whole chromosome aneuploidies in Trypanosoma cruzi strains revealed by array comparative genomic hybridization. BMC Genomics 2011; 12:139 [View Article] [PubMed]
    [Google Scholar]
  15. Wang W, Peng D, Baptista RP, Li Y, Kissinger JC et al. Strain-specific genome evolution in Trypanosoma cruzi, the agent of Chagas disease. PLoS Pathog 2021; 17:e1009254 [View Article] [PubMed]
    [Google Scholar]
  16. Berná L, Rodriguez M, Chiribao ML, Parodi-Talice A, Pita S et al. Expanding an expanded genome: long-read sequencing of Trypanosoma cruzi. Microb Genom 2018; 4: [View Article] [PubMed]
    [Google Scholar]
  17. Talavera-López C, Messenger LA, Lewis MD, Yeo M, Reis-Cunha JL et al. Repeat-driven generation of antigenic diversity in a major human pathogen, Trypanosoma cruzi. Front Cell Infect Microbiol 2021; 11:614665 [View Article] [PubMed]
    [Google Scholar]
  18. Bennett RJ, Forche A, Berman J. Rapid mechanisms for generating genome diversity: whole ploidy shifts, aneuploidy, and loss of heterozygosity. Cold Spring Harb Perspect Med 2014; 4:4 [View Article] [PubMed]
    [Google Scholar]
  19. Bussotti G, Gouzelou E, Côrtes Boité M, Kherachi I, Harrat Z et al. Leishmania genome dynamics during environmental adaptation reveal strain-specific differences in gene copy number variation, karyotype instability, and telomeric amplification. mBio 2018; 9:e01399-18 [View Article] [PubMed]
    [Google Scholar]
  20. Gilchrist C, Stelkens R. Aneuploidy in yeast: Segregation error or adaptation mechanism?. Yeast 2019; 36:525–539 [View Article] [PubMed]
    [Google Scholar]
  21. Selmecki A, Forche A, Berman J. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 2006; 313:367–370 [View Article] [PubMed]
    [Google Scholar]
  22. Wertheimer NB, Stone N, Berman J. Ploidy dynamics and evolvability in fungi. Philos Trans R Soc Lond B Biol Sci 2016; 371:371 [View Article] [PubMed]
    [Google Scholar]
  23. Ben-David U, Amon A. Context is everything: aneuploidy in cancer. Nat Rev Genet 2020; 21:44–62 [View Article] [PubMed]
    [Google Scholar]
  24. Clayton C. Regulation of gene expression in trypanosomatids: living with polycistronic transcription. Open Biol 2019; 9:190072 [View Article] [PubMed]
    [Google Scholar]
  25. Ubeda J-M, Raymond F, Mukherjee A, Plourde M, Gingras H et al. Genome-wide stochastic adaptive DNA amplification at direct and inverted DNA repeats in the parasite Leishmania. PLoS Biol 2014; 12:e1001868 [View Article] [PubMed]
    [Google Scholar]
  26. Akiyoshi B, Gull K. Discovery of unconventional kinetochores in kinetoplastids. Cell 2014; 156:1247–1258 [View Article] [PubMed]
    [Google Scholar]
  27. Patino LH, Imamura H, Cruz-Saavedra L, Pavia P, Muskus C et al. Major changes in chromosomal somy, gene expression and gene dosage driven by SbIII in Leishmania braziliensis and Leishmania panamensis. Sci Rep 2019; 9:9 [View Article] [PubMed]
    [Google Scholar]
  28. Dumetz F, Imamura H, Sanders M, Seblova V, Myskova J et al. Modulation of aneuploidy in Leishmania donovani during adaptation to different in vitro and in vivo environments and its impact on gene expression. mBio 20178
    [Google Scholar]
  29. Almeida LV, Coqueiro-Dos-Santos A, Rodriguez-Luiz GF, McCulloch R, Bartholomeu DC et al. Chromosomal copy number variation analysis by next generation sequencing confirms ploidy stability in Trypanosoma brucei subspecies. Microb Genom 2018; 4: [View Article] [PubMed]
    [Google Scholar]
  30. Schwabl P, Imamura H, Van den Broeck F, Costales JA, Maiguashca-Sánchez J et al. Meiotic sex in Chagas disease parasite Trypanosoma cruzi. Nat Commun 2019; 10:1–14 [View Article] [PubMed]
    [Google Scholar]
  31. Reis-Cunha JL, Baptista RP, Rodrigues-Luiz GF, Coqueiro-Dos-Santos A, Valdivia HO et al. Whole genome sequencing of Trypanosoma cruzi field isolates reveals extensive genomic variability and complex aneuploidy patterns within TcII DTU. BMC Genomics 2018; 19:816 [View Article] [PubMed]
    [Google Scholar]
  32. Messenger LA, Miles MA. Evidence and importance of genetic exchange among field populations of Trypanosoma cruzi. Acta Trop 2015; 151:150–155 [View Article] [PubMed]
    [Google Scholar]
  33. Tibayrenc M, Ayala FJ. The population genetics of Trypanosoma cruzi revisited in the light of the predominant clonal evolution model. Acta Trop 2015; 151:156–165 [View Article] [PubMed]
    [Google Scholar]
  34. Tibayrenc M, Ayala FJ. How clonal are Trypanosoma and Leishmania?. Trends Parasitol 2013; 29:264–269 [View Article] [PubMed]
    [Google Scholar]
  35. Hickman MA, Paulson C, Dudley A, Berman J. Parasexual ploidy reduction drives population heterogeneity through random and transient aneuploidy in Candida albicans. Genetics 2015; 200:781–794 [View Article] [PubMed]
    [Google Scholar]
  36. Gaunt MW, Yeo M, Frame IA, Stothard JR, Carrasco HJ et al. Mechanism of genetic exchange in American trypanosomes. Nature 2003; 421:936–939 [View Article] [PubMed]
    [Google Scholar]
  37. Bennett RJ. The parasexual lifestyle of Candida albicans. Curr Opin Microbiol 2015; 28:10–17 [View Article] [PubMed]
    [Google Scholar]
  38. Villa LM, Guhl F, Zabala D, Ramírez JD, Urrea DA et al. The identification of two Trypanosoma cruzi I genotypes from domestic and sylvatic transmission cycles in Colombia based on a single polymerase chain reaction amplification of the spliced-leader intergenic region. Mem Inst Oswaldo Cruz 2013; 108:932–935 [View Article] [PubMed]
    [Google Scholar]
  39. Ramírez JD, Guhl F, Rendón LM, Rosas F, Marin-Neto JA et al. Chagas cardiomyopathy manifestations and Trypanosoma cruzi genotypes circulating in chronic Chagasic patients. PLoS Negl Trop Dis 2010; 4:e899 [View Article] [PubMed]
    [Google Scholar]
  40. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754–1760 [View Article] [PubMed]
    [Google Scholar]
  41. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011; 43:491–498 [View Article] [PubMed]
    [Google Scholar]
  42. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al. The genome analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20:1297–1303 [View Article] [PubMed]
    [Google Scholar]
  43. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2019; 20:1160–1166 [View Article] [PubMed]
    [Google Scholar]
  44. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  45. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article] [PubMed]
    [Google Scholar]
  46. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. Genome project data processing subgroup. The Sequence Alignment/Map format and SAMtools Bioinformatics 2009; 15:2078–2079 [View Article]
    [Google Scholar]
  47. Warrenfeltz S, Basenko EY, Crouch K, Harb OS, Kissinger JC et al. EuPathDB: The Eukaryotic Pathogen Genomics Database Resource. Methods Mol Biol 2018; 1757:69–113 [View Article] [PubMed]
    [Google Scholar]
  48. Llewellyn MS, Miles MA, Carrasco HJ, Lewis MD, Yeo M et al. Genome-scale multilocus microsatellite typing of Trypanosoma cruzi discrete typing unit I reveals phylogeographic structure and specific genotypes linked to human infection. PLoS Pathog 2009; 5:e1000410 [View Article] [PubMed]
    [Google Scholar]
  49. Cura CI, Mejía-Jaramillo AM, Duffy T, Burgos JM, Rodriguero M et al. Trypanosoma cruzi I genotypes in different geographical regions and transmission cycles based on a microsatellite motif of the intergenic spacer of spliced-leader genes. Int J Parasitol 2010; 40:1599–1607 [View Article] [PubMed]
    [Google Scholar]
  50. Costales JA, Kotton CN, Zurita-Leal AC, Garcia-Perez J, Llewellyn MS et al. Chagas disease reactivation in a heart transplant patient infected by domestic Trypanosoma cruzi discrete typing unit I (TcIDOM). Parasit Vectors 2015; 8:435 [View Article] [PubMed]
    [Google Scholar]
  51. Valadares HMS, Pimenta JR, Segatto M, Veloso VM, Gomes ML et al. Unequivocal identification of subpopulations in putative multiclonal Trypanosoma cruzi strains by FACs single cell sorting and genotyping. PLoS Negl Trop Dis 2012; 6:e1722 [View Article] [PubMed]
    [Google Scholar]
  52. Tihon E, Imamura H, Dujardin JC, Van Den Abbeele J. Evidence for viable and stable triploid Trypanosoma congolense parasites. Parasit Vectors 2017; 10:468 [View Article] [PubMed]
    [Google Scholar]
  53. Sterkers Y, Lachaud L, Crobu L, Bastien P, Pagès M. FISH analysis reveals aneuploidy and continual generation of chromosomal mosaicism in Leishmania major. Cell Microbiol 2011; 13:274–283 [View Article] [PubMed]
    [Google Scholar]
  54. Inbar E, Shaik J, Iantorno SA, Romano A, Nzelu CO et al. Whole genome sequencing of experimental hybrids supports meiosis-like sexual recombination in Leishmania. PLoS Genet 2019; 15:15 [View Article] [PubMed]
    [Google Scholar]
  55. Bernardo WP, Souza RT, Costa-Martins AG, Ferreira ER, Mortara RA et al. Genomic organization and generation of genetic variability in the RHS (Retrotransposon Hot Spot) protein multigene family in Trypanosoma cruzi. Genes (Basel) 2020; 11:E1085 [View Article] [PubMed]
    [Google Scholar]
  56. Bringaud F, Biteau N, Melville SE, Hez S, El-Sayed NM et al. A new, expressed multigene family containing A hot spot for insertion of retroelements is associated with polymorphic subtelomeric regions of Trypanosoma brucei. Eukaryot Cell 2002; 1:137–151 [View Article] [PubMed]
    [Google Scholar]
  57. Callejas S, Leech V, Reitter C, Melville S. Hemizygous subtelomeres of an African trypanosome chromosome may account for over 75% of chromosome length. Genome Res 2006; 16:1109–1118 [View Article] [PubMed]
    [Google Scholar]
  58. SdS M. DNA double-strand breaks: A double-edged sword for trypanosomatids | cell and developmental biology. Front Cell Dev Biol 2021
    [Google Scholar]
  59. Abbey D, Hickman M, Gresham D, Berman J. High-Resolution SNP/CGH microarrays reveal the accumulation of loss of heterozygosity in commonly used Candida albicans strains. G3 Genes Genomes Genetics 2011; 1:523–530 [View Article]
    [Google Scholar]
  60. Patino LH, Muñoz M, Cruz-Saavedra L, Muskus C, Ramírez JD. Genomic diversification, structural plasticity, and hybridization in Leishmania (Viannia) braziliensis. Front Cell Infect Microbiol 2020; 10:582192 [View Article] [PubMed]
    [Google Scholar]
  61. Weir W, Capewell P, Foth B, Clucas C, Pountain A et al. Population genomics reveals the origin and asexual evolution of human infective trypanosomes. Elife 2016; 5:e11473 [View Article] [PubMed]
    [Google Scholar]
  62. Andersen MP, Nelson ZW, Hetrick ED, Gottschling DE. A genetic screen for increased loss of heterozygosity in Saccharomyces cerevisiae. Genetics 2008; 179:1179–1195 [View Article] [PubMed]
    [Google Scholar]
  63. Daigaku Y, Mashiko S, Mishiba K, Yamamura S, Ui A et al. Loss of heterozygosity in yeast can occur by ultraviolet irradiation during the S phase of the cell cycle. Mutat Res 2006; 600:177–183 [View Article] [PubMed]
    [Google Scholar]
  64. Berry ASF, Salazar-Sánchez R, Castillo-Neyra R, Borrini-Mayorí K, Chipana-Ramos C et al. Sexual reproduction in a natural Trypanosoma cruzi population. PLoS Negl Trop Dis 2019; 13:e0007392 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000843
Loading
/content/journal/mgen/10.1099/mgen.0.000843
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error