Insights into plastic biodegradation: community composition and functional capabilities of the superworm () microbiome in styrofoam feeding trials Open Access

Abstract

Plastics are inexpensive and widely used organic polymers, but their high durability hinders biodegradation. Polystyrene, including extruded polystyrene (also known as styrofoam), is among the most commonly produced plastics worldwide and is recalcitrant to microbial degradation. In this study, we assessed changes in the gut microbiome of superworms () reared on bran, polystyrene or under starvation conditions over a 3 weeks period. Superworms on all diets were able to complete their life cycle to pupae and imago, although superworms reared on polystyrene had minimal weight gains, resulting in lower pupation rates compared to bran reared worms. The change in microbial gut communities from baseline differed considerably between diet groups, with polystyrene and starvation groups characterized by a loss of microbial diversity and the presence of opportunistic pathogens. Inferred microbial functions enriched in the polystyrene group included transposon movements, membrane restructuring and adaptations to oxidative stress. We detected several encoded enzymes with reported polystyrene and styrene degradation abilities, supporting previous reports of polystyrene-degrading bacteria in the superworm gut. By recovering metagenome-assembled genomes (MAGs) we linked phylogeny and functions and identified genera including , and that possess genes associated with polystyrene degradation. In conclusion, our results provide the first metagenomic insights into the metabolic pathways used by the gut microbiome of superworms to degrade polystyrene. Our results also confirm that superworms can survive on polystyrene feed, but this diet has considerable negative impacts on host gut microbiome diversity and health.

Funding
This study was supported by the:
  • Australian Research Council (Award FT170100213)
    • Principle Award Recipient: RinkeChristian
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000842
2022-06-09
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/6/mgen000842.html?itemId=/content/journal/mgen/10.1099/mgen.0.000842&mimeType=html&fmt=ahah

References

  1. Thompson RC, Swan SH, Moore CJ, vom Saal FS. Our plastic age. Phil Trans R Soc B 2009; 364:1973–1976 [View Article] [PubMed]
    [Google Scholar]
  2. Plastics Europe An analysis of European plastics production, demand and waste data. In Plastics—the Facts 2019 Brussels, Belgium: 2019
    [Google Scholar]
  3. Barnes DKA, Galgani F, Thompson RC, Barlaz M. Accumulation and fragmentation of plastic debris in global environments. Phil Trans R Soc B 2009; 364:1985–1998 [View Article] [PubMed]
    [Google Scholar]
  4. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv 2017; 3:e1700782 [View Article] [PubMed]
    [Google Scholar]
  5. Plastics Europe An analysis of European plastics production, demand and waste data. In Plastics - the Facts 2016 Brussels, Belgium: 2016
    [Google Scholar]
  6. Ho BT, Roberts TK, Lucas S. An overview on biodegradation of polystyrene and modified polystyrene: the microbial approach. Critical Reviews in Biotechnology 2017; 38:308–320 [View Article] [PubMed]
    [Google Scholar]
  7. Kaplan DL, Hartenstein R, Sutter J. Biodegradation of polystyrene, poly(metnyl methacrylate), and phenol formaldehyde. Appl Environ Microbiol 1979; 38:551–553 [View Article] [PubMed]
    [Google Scholar]
  8. Otake Y, Kobayashi T, Asabe H, Murakami N, Ono K. Biodegradation of low-density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for over 32 years. J Appl Polym Sci 1995; 56:1789–1796 [View Article]
    [Google Scholar]
  9. Rochman CM, Tahir A, Williams SL, Baxa DV, Lam R et al. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci Rep 2015; 5:1–10 [View Article] [PubMed]
    [Google Scholar]
  10. Albertsson A-C, Karlsson S. The influence of biotic and abiotic environments on the degradation of polyethylene. Progress in Polymer Science 1990; 15:177–192 [View Article]
    [Google Scholar]
  11. O’Brine T, Thompson RC. Degradation of plastic carrier bags in the marine environment. Marine Pollution Bulletin 2010; 60:2279–2283 [View Article] [PubMed]
    [Google Scholar]
  12. Singh B, Sharma N. Mechanistic implications of plastic degradation. Polymer Degradation and Stability 2008; 93:561–584 [View Article]
    [Google Scholar]
  13. Krueger MC, Seiwert B, Prager A, Zhang S, Abel B et al. Degradation of polystyrene and selected analogues by biological Fenton chemistry approaches: Opportunities and limitations. Chemosphere 2017; 173:520–528 [View Article] [PubMed]
    [Google Scholar]
  14. Gewert B, Plassmann MM, MacLeod M. Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Process Impacts 2015; 17:1513–1521 [View Article] [PubMed]
    [Google Scholar]
  15. Wei R, Zimmermann W. Microbial enzymes for the recycling of recalcitrant petroleum‐based plastics: how far are we?. Microb Biotechnol 2017; 10:1308–1322 [View Article] [PubMed]
    [Google Scholar]
  16. Sielicki M, Focht DD, Martin JP. Microbial degradation of [ 14 C]polystyrene and 1,3-diphenylbutane. Can J Microbiol 1978; 24:798–803 [View Article] [PubMed]
    [Google Scholar]
  17. Syranidou E, Karkanorachaki K, Amorotti F, Franchini M, Repouskou E et al. Biodegradation of weathered polystyrene films in seawater microcosms. Sci Rep 2017; 7:17991 [View Article] [PubMed]
    [Google Scholar]
  18. Yang J, Yang Y, Wu W-M, Zhao J, Jiang L. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 2014; 48:13776–13784 [View Article] [PubMed]
    [Google Scholar]
  19. Bombelli P, Howe CJ, Bertocchini F. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Current Biology 2017; 27:R292–R293 [View Article] [PubMed]
    [Google Scholar]
  20. Weber C, Pusch S, Opatz T. Polyethylene bio-degradation by caterpillars?. Current Biology 2017; 27:R744–R745 [View Article] [PubMed]
    [Google Scholar]
  21. Yang Y, Yang J, Wu W-M, Zhao J, Song Y et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. role of gut microorganisms. Environ Sci Technol 2015; 49:12087–12093 [View Article] [PubMed]
    [Google Scholar]
  22. Yang Y, Yang J, Wu W-M, Zhao J, Song Y et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 1. chemical and physical characterization and isotopic tests. Environ Sci Technol 2015; 49:12080–12086 [View Article]
    [Google Scholar]
  23. Brandon AM, Gao S-H, Tian R, Ning D, Yang S-S et al. Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the Gut Microbiome. Environ Sci Technol 2018; 52:6526–6533 [View Article] [PubMed]
    [Google Scholar]
  24. Miao S-J, Zhang Y-L. Feeding and degradation effect on plastic of Zophobas morio. J Environ Entomol 2010; X174:
    [Google Scholar]
  25. Yang Y, Wang J, Xia M. Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Sci Total Environ 2020; 708:135233 [View Article] [PubMed]
    [Google Scholar]
  26. Simpson A, Rattigan I, Kalavsky E, Parr G. Thermal conductivity and conditioning of grey expanded polystyrene foams. Cellular Polymers 2020; 39:238–262 [View Article]
    [Google Scholar]
  27. Maciel-Vergara G, Jensen AB, Eilenberg J. Cannibalism as a possible entry route for opportunistic pathogenic bacteria to insect hosts, exemplified by Pseudomonas aeruginosa, a pathogen of the giant mealworm Zophobas morio. Insects 2018; 9:88 [View Article] [PubMed]
    [Google Scholar]
  28. Rumbos CI, Athanassiou CG. The Superworm, Zophobas morio (Coleoptera:Tenebrionidae): A “Sleeping Giant” in Nutrient Sources. J Insect Sci 2021; 21:13 [View Article] [PubMed]
    [Google Scholar]
  29. Boyd JA, Woodcroft BJ, Tyson GW. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res 2018; 46:e59 [View Article] [PubMed]
    [Google Scholar]
  30. Minich JJ, Sanders JG, Amir A, Humphrey G, Gilbert JA et al. Quantifying and understanding well-to-well contamination in microbiome research. mSystems 2019; 4: [View Article] [PubMed]
    [Google Scholar]
  31. Epstein HE, Smith HA, Cantin NE, Mocellin VJL, Torda G et al. Temporal variation in the microbiome of Acropora coral species does not reflect seasonality. Front Microbiol 2019; 10: [View Article] [PubMed]
    [Google Scholar]
  32. Lee MD, Walworth NG, Sylvan JB, Edwards KJ, Orcutt BN. Microbial communities on seafloor basalts at Dorado Outcrop reflect level of alteration and highlight global lithic clades. Front Microbiol 2015; 6:1470 [View Article] [PubMed]
    [Google Scholar]
  33. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015; 31:1674–1676 [View Article] [PubMed]
    [Google Scholar]
  34. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  35. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2014; 12:59–60 [View Article] [PubMed]
    [Google Scholar]
  36. Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 2020; 36:2251–2252 [View Article] [PubMed]
    [Google Scholar]
  37. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 2010; 11:R25 [View Article] [PubMed]
    [Google Scholar]
  38. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26:139–140 [View Article] [PubMed]
    [Google Scholar]
  39. Kim HR, Lee HM, Yu HC, Jeon E, Lee S et al. Biodegradation of polystyrene by Pseudomonas sp. isolated from the gut of superworms (Larvae of Zophobas atratus). Environ Sci Technol 2020; 54:6987–6996 [View Article] [PubMed]
    [Google Scholar]
  40. Bikandi J, Millan RS, Rementeria A, Garaizar J. In silico analysis of complete bacterial genomes: PCR, AFLP-PCR and endonuclease restriction. Bioinformatics 2004; 20:798–799 [View Article] [PubMed]
    [Google Scholar]
  41. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  42. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH, Hancock J. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019 [View Article] [PubMed]
    [Google Scholar]
  43. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  44. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  45. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article] [PubMed]
    [Google Scholar]
  46. Weaver DK, McFarlane JE. The effect of larval density on growth and development of Tenebrio molitor. Journal of Insect Physiology 1990; 36:531–536 [View Article]
    [Google Scholar]
  47. Gillott C. Postembryonic development. In Gillott C. eds Entomology Dordrecht: Springer Netherlands; 1995 pp 595–623
    [Google Scholar]
  48. Heiman ML, Greenway FL. A healthy gastrointestinal microbiome is dependent on dietary diversity. Molecular Metabolism 2016; 5:317–320 [View Article] [PubMed]
    [Google Scholar]
  49. Krams IA, Kecko S, Jõers P, Trakimas G, Elferts D et al. Microbiome symbionts and diet diversity incur costs on the immune system of insect larvae. J Exp Biol 2017; 220:4204–4212 [View Article] [PubMed]
    [Google Scholar]
  50. Priya NG, Ojha A, Kajla MK, Raj A, Rajagopal R. Host plant induced variation in gut bacteria of Helicoverpa armigera. PLoS One 2012; 7:e30768 [View Article] [PubMed]
    [Google Scholar]
  51. Mattila HR, Rios D, Walker-Sperling VE, Roeselers G, Newton ILG et al. Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS ONE 2012; 7:e32962 [View Article] [PubMed]
    [Google Scholar]
  52. Jung J, Heo A, Park YW, Kim YJ, Koh H et al. Gut microbiota of Tenebrio molitor and their response to environmental change. J Microbiol Biotechnol 2014; 24:888–897 [View Article] [PubMed]
    [Google Scholar]
  53. Wang Y, Zhang Y. Investigation of gut-associated bacteria in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae using culture-dependent and DGGE Methods. Ann Entomol Soc Am 2015; 108:941–949 [View Article]
    [Google Scholar]
  54. Urbanek AK, Rybak J, Wróbel M, Leluk K, Mirończuk AM. A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste. Environmental Pollution 2020; 262:114281 [View Article] [PubMed]
    [Google Scholar]
  55. Jurkevitch E. Riding the Trojan horse: combating pest insects with their own symbionts. Microb Biotechnol 2011; 4:620–627 [View Article] [PubMed]
    [Google Scholar]
  56. Dillon RJ, Dillon VM. The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 2004; 49:71–92 [View Article]
    [Google Scholar]
  57. Gupta A, Nair S. Dynamics of insect-microbiome interaction influence host and microbial symbiont. Front Microbiol 2020; 11:1357 [View Article] [PubMed]
    [Google Scholar]
  58. Gurung K, Wertheim B, Falcao Salles J. The microbiome of pest insects: it is not just bacteria. Entomol Exp Appl 2019; 167:156–170 [View Article]
    [Google Scholar]
  59. Samson R, Legendre JB, Christen R, Saux MF-L, Achouak W et al. Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int J Syst Evol Microbiol 2005; 55:1415–1427 [View Article]
    [Google Scholar]
  60. Costechareyre D, Balmand S, Condemine G, Rahbé Y, Yang C-H. Dickeya dadantii, a plant pathogenic bacterium producing cyt-like entomotoxins, causes septicemia in the pea aphid Acyrthosiphon pisum. PLoS ONE 2012; 7:e30702 [View Article] [PubMed]
    [Google Scholar]
  61. Fusco V, Quero GM, Cho G-S, Kabisch J, Meske D et al. The genus Weissella: taxonomy, ecology and biotechnological potential. Front Microbiol 2015; 6:155 [View Article] [PubMed]
    [Google Scholar]
  62. Shuttleworth LA, Khan MAM, Osborne T, Collins D, Srivastava M et al. A walk on the wild side: gut bacteria fed to mass-reared larvae of Queensland fruit fly [Bactrocera tryoni (Froggatt)] influence development. BMC Biotechnol 2019; 19:95 [View Article] [PubMed]
    [Google Scholar]
  63. Dubin K, Pamer EG, Britton RA, Cani PD. Enterococci and their interactions with the intestinal microbiome. Microbiol Spectr 2017; 5: [View Article] [PubMed]
    [Google Scholar]
  64. Lebreton F, Willems RJL, Gilmore MS. Enterococcus diversity, origins in nature, and gut colonization. In Gilmore MS, Clewell DB, Ike Y, Shankar N. eds Enterococci: From Commensals to Leading Causes of Drug Resistant Infection Boston: Massachusetts Eye and Ear Infirmary; 2014
    [Google Scholar]
  65. Neely AN, Maley MP. Survival of enterococci and staphylococci on hospital fabrics and plastic. J Clin Microbiol 2000; 38:724–726 [View Article]
    [Google Scholar]
  66. Balish E, Warner T. Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice. The American Journal of Pathology 2002; 160:2253–2257 [View Article] [PubMed]
    [Google Scholar]
  67. Wallen ZD, Appah M, Dean MN, Sesler CL, Factor SA et al. Characterizing dysbiosis of gut microbiome in PD: evidence for overabundance of opportunistic pathogens. NPJ Parkinsons Dis 2020; 6:11 [View Article] [PubMed]
    [Google Scholar]
  68. Singh L, Cariappa MP, Kaur M. Klebsiella oxytoca: An emerging pathogen?. Medical Journal Armed Forces India 2016; 72:S59–S61 [View Article] [PubMed]
    [Google Scholar]
  69. Chow V, Nong G, Preston JF. Structure, function, and regulation of the aldouronate utilization gene cluster from Paenibacillus sp. strain JDR-2. J Bacteriol 2007; 189:8863–8870 [View Article] [PubMed]
    [Google Scholar]
  70. Casacuberta E, González J. The impact of transposable elements in environmental adaptation. Mol Ecol 2013; 22:1503–1517 [View Article] [PubMed]
    [Google Scholar]
  71. Li S-J, Hua Z-S, Huang L-N, Li J, Shi S-H et al. Microbial communities evolve faster in extreme environments. Sci Rep 2014; 4:6205 [View Article] [PubMed]
    [Google Scholar]
  72. Vollmer W, Joris B, Charlier P, Foster S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 2008; 32:259–286 [View Article] [PubMed]
    [Google Scholar]
  73. Figueiredo TA, Sobral RG, Ludovice AM, Almeida JMF de, Bui NK et al. Identification of genetic determinants and enzymes involved with the amidation of glutamic acid residues in the peptidoglycan of Staphylococcus aureus. PLoS Pathog 2012; 8:e1002508 [View Article] [PubMed]
    [Google Scholar]
  74. Zuber P. Spx-RNA polymerase interaction and global transcriptional control during oxidative stress. J Bacteriol 2004; 186:1911–1918 [View Article] [PubMed]
    [Google Scholar]
  75. Johnson V, Barbehenn R. Oxygen levels in the gut lumens of herbivorous insects. J Insect Physiol 2000; 46:897–903 [View Article] [PubMed]
    [Google Scholar]
  76. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ 2018k2179 [View Article] [PubMed]
    [Google Scholar]
  77. Tegtmeier D, Thompson CL, Schauer C, Brune A. Oxygen affects gut bacterial colonization and metabolic activities in a gnotobiotic cockroach model. Appl Environ Microbiol 2016; 82:1080–1089 [View Article] [PubMed]
    [Google Scholar]
  78. Stevenson L, Phillips F, O’Sullivan K, Walton J. Wheat bran: its composition and benefits to health, a European perspective. Int J Food Sci Nutr 2012; 63:1001–1013 [View Article] [PubMed]
    [Google Scholar]
  79. Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 2016; 167:1339–1353 [View Article] [PubMed]
    [Google Scholar]
  80. Audouin L, Langlois V, Verdu J, de Bruijn JCM. Role of oxygen diffusion in polymer ageing: kinetic and mechanical aspects. Journal of Materials Science 2004; 29:569–583 [View Article]
    [Google Scholar]
  81. Fontanella S, Bonhomme S, Koutny M, Husarova L, Brusson J-M et al. Comparison of the biodegradability of various polyethylene films containing pro-oxidant additives. Polymer Degradation and Stability 2010; 95:1011–1021 [View Article]
    [Google Scholar]
  82. Koutny M, Lemaire J, Delort A-M. Biodegradation of polyethylene films with prooxidant additives. Chemosphere 2006; 64:1243–1252 [View Article] [PubMed]
    [Google Scholar]
  83. Lewis JC, Coelho PS, Arnold FH. Enzymatic functionalization of carbon-hydrogen bonds. Chem Soc Rev 2011; 40:2003–2021 [View Article] [PubMed]
    [Google Scholar]
  84. Ma S, Preims M, Piumi F, Kappel L, Seiboth B et al. Molecular and catalytic properties of fungal extracellular cellobiose dehydrogenase produced in prokaryotic and eukaryotic expression systems. Microb Cell Fact 2017; 16:37 [View Article] [PubMed]
    [Google Scholar]
  85. Frank A, Eborall W, Hyde R, Hart S, Turkenburg JP et al. Mutational analysis of phenolic acid decarboxylase from Bacillus subtilis (BsPAD), which converts bio-derived phenolic acids to styrene derivatives. Catal Sci Technol 2012; 2:1568 [View Article]
    [Google Scholar]
  86. Mohan AJ, Sekhar VC, Bhaskar T, Nampoothiri KM. Microbial assisted high impact polystyrene (HIPS) degradation. Bioresource Technology 2016; 213:204–207 [View Article] [PubMed]
    [Google Scholar]
  87. Chen C-C, Han X, Ko T-P, Liu W, Guo R-T. Structural studies reveal the molecular mechanism of PETase. FEBS J 2018; 285:3717–3723 [View Article]
    [Google Scholar]
  88. Eberl A, Heumann S, Brückner T, Araujo R, Cavaco-Paulo A et al. Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. Journal of Biotechnology 2009; 143:207–212 [View Article] [PubMed]
    [Google Scholar]
  89. Kawai F, Kawabata T, Oda M. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Appl Microbiol Biotechnol 2019; 103:4253–4268 [View Article] [PubMed]
    [Google Scholar]
  90. Yang W, Cao H, Xu L, Zhang H, Yan Y. A novel eurythermic and thermostale lipase LipM from Pseudomonas moraviensis M9 and its application in the partial hydrolysis of algal oil. BMC Biotechnol 2015; 15:94 [View Article] [PubMed]
    [Google Scholar]
  91. Warhurst AM, Fewson CA. Microbial metabolism and biotransformations of styrene. Journal of Applied Bacteriology 1994; 77:597–606 [View Article] [PubMed]
    [Google Scholar]
  92. Bestetti G, Di Gennaro P, Colmegna A, Ronco I, Galli E et al. Characterization of styrene catabolic pathway in Pseudomonas fluorescens ST. International Biodeterioration & Biodegradation 2004; 54:183–187 [View Article]
    [Google Scholar]
  93. Tischler D. Pathways for the degradation of styrene. In Tischler D. eds Microbial Styrene Degradation, SpringerBriefs in Microbiology Cham: Springer International Publishing; 2015 pp 7–22
    [Google Scholar]
  94. Warhurst AM, Clarke KF, Hill RA, Holt RA, Fewson CA. Metabolism of styrene by Rhodococcus rhodochrous NCIMB 13259. Appl Environ Microbiol 1994; 60:1137–1145 [View Article] [PubMed]
    [Google Scholar]
  95. Oelschlägel M, Zimmerling J, Schlömann M, Tischler D. Styrene oxide isomerase of Sphingopyxis sp. Kp5.2. Microbiology (Reading) 2014; 160:2481–2491 [View Article] [PubMed]
    [Google Scholar]
  96. Patrauchan MA, Florizone C, Eapen S, Gómez-Gil L, Sethuraman B et al. Roles of ring-hydroxylating dioxygenases in styrene and benzene catabolism in Rhodococcus jostii RHA1. J Bacteriol 2008; 190:37–47 [View Article] [PubMed]
    [Google Scholar]
  97. Tischler D, Kaschabek SR. Microbial styrene degradation: from basics to biotechnology. In Singh SN. eds Microbial Degradation of Xenobiotics, Environmental Science and Engineering Berlin, Heidelberg: Springer; 2012 pp 67–99
    [Google Scholar]
  98. Beltrametti F, Marconi AM, Bestetti G, Colombo C, Galli E et al. Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol 1997; 63:2232–2239 [View Article]
    [Google Scholar]
  99. Itch N, Hayashi K, Okada K, Ito T, Mizuguchi N. Characterization of styrene oxide isomerase, a key enzyme of styrene and styrene oxide metabolism in Corynehacterium sp. Biosci Biotechnol Biochem 1997; 61:2058–2062 [View Article] [PubMed]
    [Google Scholar]
  100. O’Connor K, Buckley CM, Hartmans S, Dobson AD. Possible regulatory role for nonaromatic carbon sources in styrene degradation by Pseudomonas putida CA-3. Appl Environ Microbiol 1995; 61:544–548 [View Article] [PubMed]
    [Google Scholar]
  101. Mooney A, O’Leary ND, Dobson ADW. Cloning and functional characterization of the styE Gene, involved in styrene transport in Pseudomonas putida CA-3. Appl Environ Microbiol 2006; 72:1302–1309 [View Article] [PubMed]
    [Google Scholar]
  102. Kahng H-Y, Byrne AM, Olsen RH, Kukor JJ. Characterization and role of tbuX in utilization of toluene by Ralstonia pickettii PKO1. J Bacteriol 2000; 182:1232–1242 [View Article] [PubMed]
    [Google Scholar]
  103. Grbić-Galić D, Churchman-Eisel N, Mraković I. Microbial transformation of styrene by anaerobic consortia. J Appl Bacteriol 1990; 69:247–260 [View Article] [PubMed]
    [Google Scholar]
  104. Atiq N, Ahmed S, Ali MI, Saadia leeb, Ahmad B et al. Isolation and identification of polystyrene biodegrading bacteria from soil. Afr J Microbiol Res 2010; 4:1537–1541
    [Google Scholar]
  105. Shimpi N, Borane M, Mishra S, Kadam M. Biodegradation of polystyrene (PS)-poly(lactic acid) (PLA) nanocomposites using Pseudomonas aeruginosa. Macromol Res 2012; 20:181–187 [View Article]
    [Google Scholar]
  106. Talaiekhozani A, Jafarzadeh N, Fulazzaky MA, Talaie MR, Beheshti M. Kinetics of substrate utilization and bacterial growth of crude oil degraded by Pseudomonas aeruginosa. J Environ Health Sci Eng 2015; 13:64 [View Article] [PubMed]
    [Google Scholar]
  107. Itoh N, Yoshida K, Okada K. Isolation and identification of styrene-degrading Corynebacterium strains, and their styrene metabolism. Biosci Biotechnol Biochem 1996; 60:1826–1830 [View Article] [PubMed]
    [Google Scholar]
  108. Law RJ, Kohler M, Heeb NV, Gerecke AC, Schmid P et al. Hexabromocyclododecane challenges scientists and regulators. Environ Sci Technol 2005; 39:281A–287A [View Article] [PubMed]
    [Google Scholar]
  109. Szabo DT. Hexabromocyclododecane. In Wexler P. eds Encyclopedia of Toxicology, 3rd ed. Oxford: Academic Press; 2014 pp 864–868
    [Google Scholar]
  110. Li Y-J, Wang R, Lin C-Y, Chen S-H, Chuang C-H et al. The degradation mechanisms of Rhodopseudomonas palustris toward hexabromocyclododecane by time-course transcriptome analysis. Chemical Engineering Journal 2021; 425:130489 [View Article]
    [Google Scholar]
  111. Huang L, Wang W, Shah SB, Hu H, Xu P et al. The HBCDs biodegradation using a Pseudomonas strain and its application in soil phytoremediation. Journal of Hazardous Materials 2019; 380:120833 [View Article] [PubMed]
    [Google Scholar]
  112. Wang R, Lin C-Y, Chen S-H, Lo K-J, Liu C-T et al. Using high-throughput transcriptome sequencing to investigate the biotransformation mechanism of hexabromocyclododecane with Rhodopseudomonas palustris in water. Sci Total Environ 2019; 692:249–258 [View Article] [PubMed]
    [Google Scholar]
  113. Allocati N, Federici L, Masulli M, Di Ilio C. Glutathione transferases in bacteria. FEBS J 2009; 276:58–75 [View Article] [PubMed]
    [Google Scholar]
  114. Liu H, Xu J, Liang R, Liu J. Characterization of the medium- and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes. PLoS One 2014; 9:e105506 [View Article] [PubMed]
    [Google Scholar]
  115. Rojo F. Degradation of alkanes by bacteria. Environ Microbiol 2009; 11:2477–2490 [View Article] [PubMed]
    [Google Scholar]
  116. Vomberg A, Klinner U. Distribution of alkB genes within n-alkane-degrading bacteria. J Appl Microbiol 2000; 89:339–348 [View Article] [PubMed]
    [Google Scholar]
  117. Widdel F, Rabus R. Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 2001; 12:259–276 [View Article] [PubMed]
    [Google Scholar]
  118. Herath A, Wawrik B, Qin Y, Zhou J, Callaghan AV et al. Transcriptional response of Desulfatibacillum alkenivorans AK-01 to growth on alkanes: insights from RT-qPCR and microarray analyses. FEMS Microbiology Ecology 2016; 92:fiw062 [View Article] [PubMed]
    [Google Scholar]
  119. Leung D, Yang D, Li Z, Zhao Z, Chen J et al. Biodiesel from Zophobas morio larva oil: process optimization and FAME characterization. Ind Eng Chem Res 2012; 51:1036–1040 [View Article]
    [Google Scholar]
  120. Derler H, Lienhard A, Berner S, Grasser M, Posch A et al. Use them for what they are good at: mealworms in circular food systems. Insects 2021; 12:40 [View Article] [PubMed]
    [Google Scholar]
  121. Hawley AK, Nobu MK, Wright JJ, Durno WE, Morgan-Lang C et al. Diverse Marinimicrobia bacteria may mediate coupled biogeochemical cycles along eco-thermodynamic gradients. Nat Commun 2017; 8:1507 [View Article] [PubMed]
    [Google Scholar]
  122. Lindivat M, Larsen A, Hess-Erga OK, Bratbak G, Hoell IA. Bioorthogonal non-canonical amino acid tagging combined with flow cytometry for determination of activity in aquatic microorganisms. Front Microbiol 2020; 11:1929 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000842
Loading
/content/journal/mgen/10.1099/mgen.0.000842
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited Most Cited RSS feed