1887

Abstract

is the most common cause of bacterial gastroenteritis worldwide, and diarrhoeal disease is a major cause of child morbidity, growth faltering and mortality in low- and middle-income countries. Despite evidence of high incidence and differences in disease epidemiology, there is limited genomic data from studies in developing countries. In this study, we aimed to quantify the extent of gene sharing in local and global populations. We characterized the genetic diversity and accessory-genome content of a collection of isolates from the Cairo metropolitan area, Egypt. In total, 112 isolates were collected from broiler carcasses (=31), milk and dairy products (=24), and patients suffering from gastroenteritis (=57). Among the most common sequence types (STs), we identified the globally disseminated host generalist ST-21 clonal complex (CC21) and the poultry specialists CC206, CC464 and CC48. Notably, CC45 and the cattle-specialist CC42 were under-represented, with a total absence of CC61. Core- and accessory-genome sharing was compared among isolates from Egypt and a comparable collection from the UK (Oxford). Lineage-specific accessory-genome sharing was significantly higher among isolates from the same country, particularly CC21, which demonstrated greater local geographical clustering. In contrast, no geographical clustering was noted in either the core or accessory genome of CC828, suggesting a highly admixed population. A greater proportion of isolates were multidrug resistant compared to . Our results suggest that there is more horizontal transfer of accessory genes between strains in Egypt. This has strong implications for controlling the spread of antimicrobial resistance among this important pathogen.

Funding
This study was supported by the:
  • Zewail City of Science and Technology (Award ZC 004-2019)
    • Principle Award Recipient: MohamedElhadidy
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000834
2022-06-08
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/6/mgen000834.html?itemId=/content/journal/mgen/10.1099/mgen.0.000834&mimeType=html&fmt=ahah

References

  1. Mouftah SF, Pascoe B, Calland JK, Mourkas E, Tonkin N et al. Local accessory gene sharing among Egyptian Campylobacter potentially promotes the spread of antimicrobial resistance. Figshare 2022 [View Article]
    [Google Scholar]
  2. McCormick BJJ, Lang DR. Diarrheal disease and enteric infections in LMIC communities: how big is the problem?. Trop Dis Travel Med Vaccines 2016; 2:11 [View Article] [PubMed]
    [Google Scholar]
  3. Platts-Mills JA, Kosek M. Update on the burden of Campylobacter in developing countries. Curr Opin Infect Dis 2014; 27:444–450 [View Article] [PubMed]
    [Google Scholar]
  4. Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM. Global epidemiology of Campylobacter infection. Clin Microbiol Rev 2015; 28:687–720 [View Article] [PubMed]
    [Google Scholar]
  5. Nichols GL, Richardson JF, Sheppard SK, Lane C, Sarran C. Campylobacter epidemiology: a descriptive study reviewing 1 million cases in England and Wales between 1989 and 2011. BMJ Open 2012; 2:e001179 [View Article] [PubMed]
    [Google Scholar]
  6. Sheppard SK, Dallas JF, MacRae M, McCarthy ND, Sproston EL et al. Campylobacter genotypes from food animals, environmental sources and clinical disease in Scotland 2005/6. Int J Food Microbiol 2009; 134:96–103 [View Article] [PubMed]
    [Google Scholar]
  7. Lee G, Pan W, Peñataro Yori P, Paredes Olortegui M, Tilley D et al. Symptomatic and asymptomatic Campylobacter infections associated with reduced growth in Peruvian children. PLoS Negl Trop Dis 2013; 7:e2036 [View Article] [PubMed]
    [Google Scholar]
  8. Lanata CF, Fischer-Walker CL, Olascoaga AC, Torres CX, Aryee MJ et al. Global causes of diarrheal disease mortality in children <5 years of age: a systematic review. PLoS One 2013; 8:e72788
    [Google Scholar]
  9. Liu J, Platts-Mills JA, Juma J, Kabir F, Nkeze J et al. Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: a reanalysis of the GEMS case-control study. Lancet 2016; 388:1291–1301 [View Article] [PubMed]
    [Google Scholar]
  10. Coker AO, Isokpehi RD, Thomas BN, Amisu KO, Obi CL. Human campylobacteriosis in developing countries. Emerg Infect Dis 2002; 8:237–244 [View Article] [PubMed]
    [Google Scholar]
  11. Crofts AA, Poly FM, Ewing CP, Kuroiwa JM, Rimmer JE et al. Campylobacter jejuni transcriptional and genetic adaptation during human infection. Nat Microbiol 2018; 3:494–502 [View Article] [PubMed]
    [Google Scholar]
  12. Kirk KF, Méric G, Nielsen HL, Pascoe B, Sheppard SK et al. Molecular epidemiology and comparative genomics of Campylobacter concisus strains from saliva, faeces and gut mucosal biopsies in inflammatory bowel disease. Sci Rep 2018; 8:1902 [View Article] [PubMed]
    [Google Scholar]
  13. Reed RP, Friedland IR, Wegerhoff FO, Khoosal M. Campylobacter bacteremia in children. Pediatr Infect Dis J 1996; 15:345–348 [View Article] [PubMed]
    [Google Scholar]
  14. ElGendy A, Sainato R, Kuroiwa J, Poly F, Riddle MS et al. Epidemiology of Campylobacter infections among children in Egypt. Am J Trop Med Hyg 2018; 98:581–585 [View Article] [PubMed]
    [Google Scholar]
  15. Rao MR, Naficy AB, Savarino SJ, Abu-Elyazeed R, Wierzba TF et al. Pathogenicity and convalescent excretion of Campylobacter in rural Egyptian children. Am J Epidemiol 2001; 154:166–173 [View Article] [PubMed]
    [Google Scholar]
  16. Liu L, Johnson HL, Cousens S, Perin J, Scott S et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 2012; 379:2151–2161 [View Article] [PubMed]
    [Google Scholar]
  17. Wierzba TF, Abdel-Messih IA, Gharib B, Baqar S, Hendaui A et al. Campylobacter infection as a trigger for Guillain-Barré syndrome in Egypt. PLoS One 2008; 3:e3674 [View Article] [PubMed]
    [Google Scholar]
  18. Asuming-Bediako N, Parry-Hanson Kunadu A, Abraham S, Habib I. Campylobacter at the human-food interface: the African perspective. Pathogens 2019; 8:87 [View Article] [PubMed]
    [Google Scholar]
  19. Waite DW, Taylor MW. Exploring the avian gut microbiota: current trends and future directions. Front Microbiol 2015; 6:673 [View Article] [PubMed]
    [Google Scholar]
  20. Saif NA, Cobo-Díaz JF, Elserafy M, El-Shiekh I, Álvarez-Ordóñez A et al. A pilot study revealing host-associated genetic signatures for source attribution of sporadic Campylobacter jejuni infection in Egypt. Transbound Emerg Dis 2021 [View Article] [PubMed]
    [Google Scholar]
  21. Facciolà A, Riso R, Avventuroso E, Visalli G, Delia SA et al. Campylobacter: from microbiology to prevention. J Prev Med Hyg 2017; 58:E79–E92 [View Article]
    [Google Scholar]
  22. Mossong J, Mughini-Gras L, Penny C, Devaux A, Olinger C et al. Human campylobacteriosis in Luxembourg, 2010-2013: a case-control study combined with multilocus sequence typing for source attribution and risk factor analysis. Sci Rep 2016; 6:20939 [View Article] [PubMed]
    [Google Scholar]
  23. Thépault A, Rose V, Quesne S, Poezevara T, Béven V et al. Ruminant and chicken: important sources of campylobacteriosis in France despite a variation of source attribution in 2009 and 2015. Sci Rep 2018; 8:9305 [View Article] [PubMed]
    [Google Scholar]
  24. Colles FM, Maiden MCJ. Campylobacter sequence typing databases: applications and future prospects. Microbiology 2012; 158:2695–2709 [View Article] [PubMed]
    [Google Scholar]
  25. Dearlove BL, Cody AJ, Pascoe B, Méric G, Wilson DJ et al. Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections. ISME J 2015; 10:721–729 [View Article] [PubMed]
    [Google Scholar]
  26. Griekspoor P, Colles FM, McCarthy ND, Hansbro PM, Ashhurst-Smith C et al. Marked host specificity and lack of phylogeographic population structure of Campylobacter jejuni in wild birds. Mol Ecol 2013; 22:1463–1472 [View Article] [PubMed]
    [Google Scholar]
  27. Méric G, McNally A, Pessia A, Mourkas E, Pascoe B et al. Convergent amino acid signatures in polyphyletic Campylobacter jejuni subpopulations suggest human niche tropism. Genome Biol Evol 2018; 10:763–774 [View Article] [PubMed]
    [Google Scholar]
  28. Sheppard SK, Cheng L, Méric G, Haan CPA, Llarena A et al. Cryptic ecology among host generalist Campylobacter jejuni in domestic animals. Mol Ecol 2014; 23:2442–2451 [View Article] [PubMed]
    [Google Scholar]
  29. Berthenet E, Thépault A, Chemaly M, Rivoal K, Ducournau A et al. Source attribution of Campylobacter jejuni shows variable importance of chicken and ruminants reservoirs in non-invasive and invasive French clinical isolates. Sci Rep 2019; 9:8098 [View Article] [PubMed]
    [Google Scholar]
  30. French N, Barrigas M, Brown P, Ribiero P, Williams N et al. Spatial epidemiology and natural population structure of Campylobacter jejuni colonizing a farmland ecosystem. Environ Microbiol 2005; 7:1116–1126 [View Article] [PubMed]
    [Google Scholar]
  31. Mourkas E, Florez-Cuadrado D, Pascoe B, Calland JK, Bayliss SC et al. Gene pool transmission of multidrug resistance among Campylobacter from livestock, sewage and human disease. Environ Microbiol 2019; 21:4597–4613 [View Article] [PubMed]
    [Google Scholar]
  32. Zhao S, Tyson GH, Chen Y, Li C, Mukherjee S et al. Whole-genome sequencing analysis accurately predicts antimicrobial resistance phenotypes in Campylobacter spp. Appl Environ Microbiol 2016; 82:459–466 [View Article] [PubMed]
    [Google Scholar]
  33. Tam CC, O’Brien SJ, Tompkins DS, Bolton FJ, Berry L et al. Changes in causes of acute gastroenteritis in the United Kingdom over 15 years: microbiologic findings from 2 prospective, population-based studies of infectious intestinal disease. Clin Infect Dis 2012; 54:1275–1286 [View Article] [PubMed]
    [Google Scholar]
  34. CDC Antibiotic-Resistant Germs: New Threats. Atlanta, GA: Centers for Disease Control and Prevention; 2020 https://www.cdc.gov/drugresistance/biggest-threats.html
  35. Inglis GD, Gusse JF, House KE, Shelton TG, Taboada EN. Tetracycline resistant Campylobacter jejuni subtypes emanating from beef cattle administered non-therapeutic chlortetracycline are longitudinally transmitted within the production continuum but are not detected in ground beef. Microorganisms 2019; 8:23 [View Article] [PubMed]
    [Google Scholar]
  36. Abdi-Hachesoo B, Khoshbakht R, Sharifiyazdi H, Tabatabaei M, Hosseinzadeh S et al. Tetracycline resistance genes in Campylobacter jejuni and C. coli isolated from poultry carcasses. Jundishapur J Microbiol 2014; 7:e12129 [View Article] [PubMed]
    [Google Scholar]
  37. Dahshan H, Abd-Elall AMM, Megahed AM, Abd-El-Kader MA, Nabawy EE. Veterinary antibiotic resistance, residues, and ecological risks in environmental samples obtained from poultry farms, Egypt. Environ Monit Assess 2015; 187:2 [View Article] [PubMed]
    [Google Scholar]
  38. Abd El-Tawab AA, Ammar AM, Ahmed HA, Ei Hofy FI, Hefny AA. Fluoroquinolone resistance and gyrA mutations in Campylobacter jejuni and Campylobacter coli isolated from chicken in Egypt. J Glob Antimicrob Resist 2018; 13:22–23 [View Article] [PubMed]
    [Google Scholar]
  39. Sabry NA, Farid SF, Dawoud DM. Antibiotic dispensing in Egyptian community pharmacies: an observational study. Res Social Adm Pharm 2014; 10:168–184 [View Article] [PubMed]
    [Google Scholar]
  40. Luangtongkum T, Jeon B, Han J, Plummer P, Logue CM et al. Antibiotic resistance in Campylobacter: emergence, transmission and persistence. Future Microbiol 2009; 4:189–200 [View Article] [PubMed]
    [Google Scholar]
  41. Pascoe B, Meric G, Yahara K, Wimalarathna H, Murray S et al. Local genes for local bacteria: evidence of allopatry in the genomes of transatlantic Campylobacter populations. Mol Ecol 2017; 26:4497–4508 [View Article] [PubMed]
    [Google Scholar]
  42. Zollner-Schwetz I, Krause R. Therapy of acute gastroenteritis: role of antibiotics. Clin Microbiol Infect 2015; 21:744–749 [View Article] [PubMed]
    [Google Scholar]
  43. Mouftah SF, Cobo-Díaz JF, Álvarez-Ordóñez A, Elserafy M, Saif NA et al. High-throughput sequencing reveals genetic determinants associated with antibiotic resistance in Campylobacter spp. from farm-to-fork. PLoS One 2021; 16:e0253797 [View Article]
    [Google Scholar]
  44. Linton D, Lawson AJ, Owen RJ, Stanley J. PCR detection, identification to species level, and fingerprinting of Campylobacter jejuni and Campylobacter coli direct from diarrheic samples. J Clin Microbiol 1997; 35:2568–2572 [View Article] [PubMed]
    [Google Scholar]
  45. Stucki U, Frey J, Nicolet J, Burnens AP. Identification of Campylobacter jejuni on the basis of a species-specific gene that encodes a membrane protein. J Clin Microbiol 1995; 33:855–859 [View Article] [PubMed]
    [Google Scholar]
  46. Gonzalez I, Grant KA, Richardson PT, Park SF, Collins MD. Specific identification of the enteropathogens Campylobacter jejuni and Campylobacter coli by using a PCR test based on the ceuE gene encoding a putative virulence determinant. J Clin Microbiol 1997; 35:759–763 [View Article] [PubMed]
    [Google Scholar]
  47. Mäklin T, Kallonen T, David S, Boinett CJ, Pascoe B et al. High-resolution sweep metagenomics using fast probabilistic inference. Wellcome Open Res 2020; 5:14 [View Article]
    [Google Scholar]
  48. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  49. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  50. Calland JK, Pascoe B, Bayliss SC, Mourkas E, Berthenet E et al. Quantifying bacterial evolution in the wild: a birthday problem for Campylobacter lineages. bioRxiv 2020407999 [View Article]
    [Google Scholar]
  51. Sheppard SK, Dallas JF, Wilson DJ, Strachan NJC, McCarthy ND et al. Evolution of an agriculture-associated disease causing Campylobacter coli clade: evidence from national surveillance data in Scotland. PLoS One 2010; 5:e15708 [View Article] [PubMed]
    [Google Scholar]
  52. Sheppard SK, Didelot X, Jolley KA, Darling AE, Pascoe B et al. Progressive genome‐wide introgression in agricultural Campylobacter coli. Mol Ecol 2012; 22:1051–1064 [View Article] [PubMed]
    [Google Scholar]
  53. Cody AJ, McCarthy NM, Wimalarathna HL, Colles FM, Clark L et al. A longitudinal 6-year study of the molecular epidemiology of clinical Campylobacter isolates in Oxfordshire, United Kingdom. J Clin Microbiol 2012; 50:3193–3201 [View Article] [PubMed]
    [Google Scholar]
  54. Cody AJ, McCarthy ND, Jansen van Rensburg M, Isinkaye T, Bentley SD et al. Real-time genomic epidemiological evaluation of human Campylobacter isolates by use of whole-genome multilocus sequence typing. J Clin Microbiol 2013; 51:2526–2534 [View Article] [PubMed]
    [Google Scholar]
  55. Dingle KE, Colles FM, Wareing DRA, Ure R, Fox AJ et al. Multilocus sequence typing system for Campylobacter jejuni. J Clin Microbiol 2001; 39:14–23 [View Article] [PubMed]
    [Google Scholar]
  56. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [View Article] [PubMed]
    [Google Scholar]
  57. Jolley KA, Maiden MC. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595 [View Article] [PubMed]
    [Google Scholar]
  58. Sheppard SK, Jolley KA, Maiden MCJ. A gene-by-gene approach to bacterial population genomics: whole genome MLST of Campylobacter. Genes 2012; 3:261–277 [View Article] [PubMed]
    [Google Scholar]
  59. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  60. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article] [PubMed]
    [Google Scholar]
  61. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  62. Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genom 2016; 2:e000093 [View Article] [PubMed]
    [Google Scholar]
  63. Grundmann H, Hori S, Tanner G. Determining confidence intervals when measuring genetic diversity and the discriminatory abilities of typing methods for microorganisms. J Clin Microbiol 2001; 39:4190–4192 [View Article] [PubMed]
    [Google Scholar]
  64. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  65. Bayliss SC, Thorpe HA, Coyle NM, Sheppard SK, Feil EJ. PIRATE: a fast and scalable pangenomics toolbox for clustering diverged orthologues in bacteria. Gigascience 2019; 8:giz119 [View Article] [PubMed]
    [Google Scholar]
  66. Gundogdu O, Bentley SD, Holden MT, Parkhill J, Dorrell N et al. Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. BMC Genomics 2007; 8:162 [View Article] [PubMed]
    [Google Scholar]
  67. Pascoe B, Williams LK, Calland JK, Meric G, Hitchings MD et al. Domestication of Campylobacter jejuni NCTC 11168. Microb Genom 2019; 5:000279 [View Article] [PubMed]
    [Google Scholar]
  68. Méric G, Yahara K, Mageiros L, Pascoe B, Maiden MCJ et al. A reference pan-genome approach to comparative bacterial genomics: identification of novel epidemiological markers in pathogenic Campylobacter. PLoS One 2014; 9:e92798 [View Article]
    [Google Scholar]
  69. Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM et al. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 2018; 34:292–293 [View Article] [PubMed]
    [Google Scholar]
  70. Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo SW et al. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res 2019; 29:304–316 [View Article] [PubMed]
    [Google Scholar]
  71. Pascoe B, Schiaffino F, Murray S, Méric G, Bayliss SC et al. Genomic epidemiology of Campylobacter jejuni associated with asymptomatic pediatric infection in the Peruvian Amazon. PLoS Negl Trop Dis 2020; 14:e0008533 [View Article] [PubMed]
    [Google Scholar]
  72. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  73. Chen L, Yang J, Yu J, Yao Z, Sun L et al. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 2005; 33:D325–D328 [View Article] [PubMed]
    [Google Scholar]
  74. NCBI Resource Coordinators Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2013; 41:D8–D20 [View Article] [PubMed]
    [Google Scholar]
  75. Zankari E, Allesøe R, Joensen KG, Cavaco LM, Lund O et al. PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother 2017; 72:2764–2768 [View Article] [PubMed]
    [Google Scholar]
  76. Sheppard SK, Dallas JF, Strachan NJC, MacRae M, McCarthy ND et al. Campylobacter genotyping to determine the source of human infection. Clin Infect Dis 2009; 48:1072–1078 [View Article]
    [Google Scholar]
  77. Colles FM, McCarthy ND, Sheppard SK, Layton R, Maiden MCJ. Comparison of Campylobacter populations isolated from a free-range broiler flock before and after slaughter. Int J Food Microbiol 2010; 137:259–264 [View Article] [PubMed]
    [Google Scholar]
  78. Olkkola S, Nykäsenoja S, Raulo S, Llarena A-K, Kovanen S et al. Antimicrobial resistance and multilocus sequence types of Finnish Campylobacter jejuni isolates from multiple sources. Zoonoses Public Health 2016; 63:10–19 [View Article] [PubMed]
    [Google Scholar]
  79. Magnússon SH, Guðmundsdóttir S, Reynisson E, Rúnarsson AR, Harðardóttir H et al. Comparison of Campylobacter jejuni isolates from human, food, veterinary and environmental sources in Iceland using PFGE, MLST and fla-SVR sequencing. J Appl Microbiol 2011; 111:971–981 [View Article] [PubMed]
    [Google Scholar]
  80. Sheppard SK, Colles F, Richardson J, Cody AJ, Elson R et al. Host association of Campylobacter genotypes transcends geographic variation. Appl Environ Microbiol 2010; 76:5269–5277 [View Article] [PubMed]
    [Google Scholar]
  81. European Food Safety AuthorityEuropean Centre for Disease Prevention and Control The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019. EFSA J 2021; 19:e06490 [View Article] [PubMed]
    [Google Scholar]
  82. Amour C, Gratz J, Mduma E, Svensen E, Rogawski ET et al. Epidemiology and impact of Campylobacter infection in children in 8 low-resource settings: results from the MAL-ED study. Clin Infect Dis 2016; 63:1171–1179 [View Article]
    [Google Scholar]
  83. Mottet A, Tempio G. Global poultry production: current state and future outlook and challenges. Worlds Poult Sci J 2019; 73:245–256 [View Article]
    [Google Scholar]
  84. Grove-White DH, Leatherbarrow AJH, Cripps PJ, Diggle PJ, French NP. Molecular epidemiology and genetic diversity of Campylobacter jejuni in ruminants. Epidemiol Infect 2011; 139:1661–1671 [View Article] [PubMed]
    [Google Scholar]
  85. Suerbaum S, Lohrengel M, Sonnevend A, Ruberg F, Kist M. Allelic diversity and recombination in Campylobacter jejuni. J Bacteriol 2001; 183:2553–2559 [View Article] [PubMed]
    [Google Scholar]
  86. Aksomaitiene J, Ramonaite S, Tamuleviciene E, Novoslavskij A, Alter T et al. Overlap of antibiotic resistant Campylobacter jejuni MLST genotypes isolated from humans, broiler products, dairy cattle and wild birds in Lithuania. Front Microbiol 2019; 10:1377 [View Article] [PubMed]
    [Google Scholar]
  87. Gripp E, Hlahla D, Didelot X, Kops F, Maurischat S et al. Closely related Campylobacter jejuni strains from different sources reveal a generalist rather than a specialist lifestyle. BMC Genomics 2011; 12:584 [View Article] [PubMed]
    [Google Scholar]
  88. Habib I, Uyttendaele M, De Zutter L. Survival of poultry-derived Campylobacter jejuni of multilocus sequence type clonal complexes 21 and 45 under freeze, chill, oxidative, acid and heat stresses. Food Microbiol 2010; 27:829–834 [View Article] [PubMed]
    [Google Scholar]
  89. Wieczorek K, Denis E, Lachtara B, Osek J. Distribution of Campylobacter jejuni multilocus sequence types isolated from chickens in Poland. Poult Sci 2017; 96:703–709 [View Article] [PubMed]
    [Google Scholar]
  90. Zhang T, Luo Q, Chen Y, Li T, Wen G et al. Molecular epidemiology, virulence determinants and antimicrobial resistance of Campylobacter spreading in retail chicken meat in Central China. Gut Pathog 2016; 8:48 [View Article] [PubMed]
    [Google Scholar]
  91. Colles FM, Ali JS, Sheppard SK, McCarthy ND, Maiden MCJ. Campylobacter populations in wild and domesticated Mallard ducks (Anas platyrhynchos). Environ Microbiol Rep 2011; 3:574–580 [View Article] [PubMed]
    [Google Scholar]
  92. Elhadidy M, Arguello H, Álvarez-Ordóñez A, Miller WG, Duarte A et al. Orthogonal typing methods identify genetic diversity among Belgian Campylobacter jejuni strains isolated over a decade from poultry and cases of sporadic human illness. Int J Food Microbiol 2018; 275:66–75 [View Article] [PubMed]
    [Google Scholar]
  93. Elhadidy M, Miller WG, Arguello H, Álvarez-Ordóñez A, Duarte A et al. Genetic basis and clonal population structure of antibiotic resistance in Campylobacter jejuni isolated from broiler carcasses in Belgium. Front Microbiol 2018; 9:1014 [View Article] [PubMed]
    [Google Scholar]
  94. Fiedoruk K, Daniluk T, Rozkiewicz D, Oldak E, Prasad S et al. Whole-genome comparative analysis of Campylobacter jejuni strains isolated from patients with diarrhea in northeastern Poland. Gut Pathog 2019; 11:32 [View Article] [PubMed]
    [Google Scholar]
  95. Dingle KE, Colles FM, Ure R, Wagenaar JA, Duim B et al. Molecular characterization of Campylobacter jejuni clones: a basis for epidemiologic investigation. Emerg Infect Dis 2002; 8:949–955 [View Article] [PubMed]
    [Google Scholar]
  96. Mourkas E, Taylor AJ, Méric G, Bayliss SC, Pascoe B et al. Agricultural intensification and the evolution of host specialism in the enteric pathogen Campylobacter jejuni. Proc Natl Acad Sci USA 2020; 117:11018–11028 [View Article] [PubMed]
    [Google Scholar]
  97. Epping L, Walther B, Piro RM, Knüver M-T, Huber C et al. Genome-wide insights into population structure and host specificity of Campylobacter jejuni. Sci Rep 2021; 11:10358 [View Article] [PubMed]
    [Google Scholar]
  98. Kwan PSL, Birtles A, Bolton FJ, French NP, Robinson SE et al. Longitudinal study of the molecular epidemiology of Campylobacter jejuni in cattle on dairy farms. Appl Environ Microbiol 2008; 74:3626–3633 [View Article] [PubMed]
    [Google Scholar]
  99. Peters S, Pascoe B, Wu Z, Bayliss SC, Zeng X et al. Campylobacter jejuni genotypes are associated with post-infection irritable bowel syndrome in humans. Commun Biol 2021; 4:1015 [View Article] [PubMed]
    [Google Scholar]
  100. Revez J, Rossi M, Ellström P, de Haan C, Rautelin H et al. Finnish Campylobacter jejuni strains of multilocus sequence type ST-22 complex have two lineages with different characteristics. PLoS One 2011; 6:e26880 [View Article]
    [Google Scholar]
  101. de Haan CPA, Kivistö R, Hakkinen M, Rautelin H, Hänninen ML. Decreasing trend of overlapping multilocus sequence types between human and chicken Campylobacter jejuni isolates over a decade in Finland. Appl Environ Microbiol 2010; 76:5228–5236 [View Article] [PubMed]
    [Google Scholar]
  102. Shin E, Oh Y, Kim M, Jung J, Lee Y. Antimicrobial resistance patterns and corresponding multilocus sequence types of the Campylobacter jejuni isolates from human diarrheal samples. Microb Drug Resist 2013; 19:110–116 [View Article] [PubMed]
    [Google Scholar]
  103. Sopwith W, Birtles A, Matthews M, Fox A, Gee S et al. Identification of potential environmentally adapted Campylobacter jejuni strain, United Kingdom. Emerg Infect Dis 2008; 14:1769–1773 [View Article] [PubMed]
    [Google Scholar]
  104. Sarhangi M, Bakhshi B, Peeraeyeh SN. High prevalence of Campylobacter jejuni CC21 and CC257 clonal complexes in children with gastroenteritis in Tehran, Iran. BMC Infect Dis 2021; 21:108 [View Article] [PubMed]
    [Google Scholar]
  105. Islam Z, van Belkum A, Wagenaar JA, Cody AJ, de Boer AG et al. Comparative population structure analysis of Campylobacter jejuni from human and poultry origin in Bangladesh. Eur J Clin Microbiol Infect Dis 2014; 33:2173–2181 [View Article] [PubMed]
    [Google Scholar]
  106. Graham JP, Vasco K, Trueba G. Hyperendemic Campylobacter jejuni in guinea pigs (Cavia porcellus) raised for food in a semi-rural community of Quito, Ecuador. Environ Microbiol Rep 2016; 8:382–387 [View Article] [PubMed]
    [Google Scholar]
  107. Prachantasena S, Charununtakorn P, Muangnoicharoen S, Hankla L, Techawal N et al. Distribution and genetic profiles of Campylobacter in commercial broiler production from breeder to slaughter in Thailand. PLoS One 2016; 11:e0149585 [View Article] [PubMed]
    [Google Scholar]
  108. Zhang P, Zhang X, Liu Y, Jiang J, Shen Z et al. Multilocus sequence types and antimicrobial resistance of Campylobacter jejuni and C. coli isolates of human patients from Beijing, China, 2017-2018. Front Microbiol 2020; 11:554784 [View Article]
    [Google Scholar]
  109. Ramonaite S, Kudirkiene E, Tamuleviciene E, Leviniene G, Malakauskas A et al. Prevalence and genotypes of Campylobacter jejuni from urban environmental sources in comparison with clinical isolates from children. J Med Microbiol 2014; 63:1205–1213 [View Article] [PubMed]
    [Google Scholar]
  110. Wallace RL, Cribb DM, Bulach DM, Ingle DJ, Joensen KG et al. Campylobacter jejuni ST50, a pathogen of global importance: a comparative genomic analysis of isolates from Australia, Europe and North America. Zoonoses Public Health 2021; 68:638–649 [View Article] [PubMed]
    [Google Scholar]
  111. Kovanen SM, Kivistö RI, Rossi M, Schott T, Kärkkäinen U-M et al. Multilocus sequence typing (MLST) and whole-genome MLST of Campylobacter jejuni isolates from human infections in three districts during a seasonal peak in Finland. J Clin Microbiol 2014; 52:4147–4154 [View Article] [PubMed]
    [Google Scholar]
  112. Kärenlampi R, Rautelin H, Schönberg-Norio D, Paulin L, Hänninen M-L. Longitudinal study of Finnish Campylobacter jejuni and C. coli isolates from humans, using multilocus sequence typing, including comparison with epidemiological data and isolates from poultry and cattle. Appl Environ Microbiol 2007; 73:148–155 [View Article] [PubMed]
    [Google Scholar]
  113. Asakura H, Brüggemann H, Sheppard SK, Ekawa T, Meyer TF et al. Molecular evidence for the thriving of Campylobacter jejuni ST-4526 in Japan. PLoS One 2012; 7:e48394 [View Article] [PubMed]
    [Google Scholar]
  114. Elhadidy M, Ali MM, El-Shibiny A, Miller WG, Elkhatib WF et al. Antimicrobial resistance patterns and molecular resistance markers of Campylobacter jejuni isolates from human diarrheal cases. PLoS One 2020; 15:e0227833 [View Article] [PubMed]
    [Google Scholar]
  115. Du Y, Wang C, Ye Y, Liu Y, Wang A et al. Molecular identification of multidrug-resistant Campylobacter species from diarrheal patients and poultry meat in Shanghai, China. Front Microbiol 2018; 9:1642 [View Article] [PubMed]
    [Google Scholar]
  116. Gharbi M, Béjaoui A, Ben Hamda C, Jouini A, Ghedira K et al. Prevalence and antibiotic resistance patterns of Campylobacter spp. isolated from broiler chickens in the North of Tunisia. Biomed Res Int 2018; 2018:7943786 [View Article] [PubMed]
    [Google Scholar]
  117. Sheppard SK, McCarthy ND, Falush D, Maiden MCJ. Convergence of Campylobacter species: implications for bacterial evolution. Science 2008; 320:237–239 [View Article] [PubMed]
    [Google Scholar]
  118. van Vliet AHM, Thakur S, Prada JM, Mehat JW, La Ragione RM. Genomic screening of antimicrobial resistance markers in UK and US Campylobacter isolates highlights stability of resistance over an 18-Year Period. Antimicrob Agents Chemother 2022e0168721 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000834
Loading
/content/journal/mgen/10.1099/mgen.0.000834
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error