1887

Abstract

DNA methylations play an important role in the biology of bacteria. Often associated with restriction modification (RM) systems, they are important drivers of bacterial evolution interfering in horizontal gene transfer events by providing a defence against foreign DNA invasion or by favouring genetic transfer through production of recombinogenic DNA ends. Little is known regarding the methylome of the genus, which encompasses several pathogenic species with small genomes. Here, genome-wide detection of DNA methylations was conducted using single molecule real-time (SMRT) and bisulphite sequencing in several strains of , an important ruminant pathogen and a model organism. Combined with whole-genome analysis, this allowed the identification of 19 methylated motifs associated with three orphan methyltransferases (MTases) and eight RM systems. All systems had a homolog in at least one phylogenetically distinct spp. Our study also revealed that several superimposed genetic events may participate in the dynamic epigenomic landscape. These included (i) DNA shuffling and frameshift mutations that affect the MTase and restriction endonuclease content of a clonal population and (ii) gene duplication, erosion, and horizontal transfer that modulate MTase and RM repertoires of the species. Some of these systems were experimentally shown to play a major role in mycoplasma conjugative, horizontal DNA transfer. While the versatility of DNA methylation may contribute to regulating essential biological functions at cell and population levels, RM systems may be key in mycoplasma genome evolution and adaptation by controlling horizontal gene transfers.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000829
2022-05-16
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/5/mgen000829.html?itemId=/content/journal/mgen/10.1099/mgen.0.000829&mimeType=html&fmt=ahah

References

  1. Razin S, Hayflick L. Highlights of mycoplasma research—An historical perspective. Biologicals 2010; 38:183–190 [View Article] [PubMed]
    [Google Scholar]
  2. Citti C, Blanchard A. Mycoplasmas and their host: emerging and re-emerging minimal pathogens. Trends in Microbiology 2013; 21:196–203 [View Article] [PubMed]
    [Google Scholar]
  3. Rocha EPC, Cornet E, Michel B, Bell SD. Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet 2005; 1:e15 [View Article] [PubMed]
    [Google Scholar]
  4. Sirand-Pugnet P, Citti C, Barré A, Blanchard A. Evolution of mollicutes: down a bumpy road with twists and turns. Research in Microbiology 2007; 158:754–766 [View Article] [PubMed]
    [Google Scholar]
  5. Sirand-Pugnet P, Lartigue C, Marenda M, Jacob D, Barré A et al. Being pathogenic, plastic, and sexual while living with a nearly minimal bacterial genome. PLoS Genet 2007; 3:e75 [View Article] [PubMed]
    [Google Scholar]
  6. Calcutt MJ, Lewis MS, Wise KS. Molecular genetic analysis of ICEF, an integrative conjugal element that is present as a repetitive sequence in the chromosome of Mycoplasma fermentans PG18. J Bacteriol 2002; 184:6929–6941 [View Article]
    [Google Scholar]
  7. Marenda M, Barbe V, Gourgues G, Mangenot S, Sagne E et al. A new integrative conjugative element occurs in Mycoplasma agalactiae as chromosomal and free circular forms. J Bacteriol 2006; 188:4137–4141 [View Article] [PubMed]
    [Google Scholar]
  8. Pereyre S, Sirand-Pugnet P, Beven L, Charron A, Renaudin H et al. Life on arginine for Mycoplasma hominis: clues from its minimal genome and comparison with other human urogenital mycoplasmas. PLoS Genet 2009; 5:e1000677 [View Article] [PubMed]
    [Google Scholar]
  9. Vasconcelos ATR, Ferreira HB, Bizarro CV, Bonatto SL, Carvalho MO et al. Swine and poultry pathogens: the complete genome sequences of two strains of Mycoplasma hyopneumoniae and a strain of Mycoplasma synoviae . J Bacteriol 2005; 187:5568–5577 [View Article] [PubMed]
    [Google Scholar]
  10. Dordet Frisoni E, Marenda MS, Sagné E, Nouvel LX, Guérillot R et al. ICEA of Mycoplasma agalactiae: a new family of self-transmissible integrative elements that confers conjugative properties to the recipient strain. Mol Microbiol 2013; 89:1226–1239 [View Article] [PubMed]
    [Google Scholar]
  11. Dordet-Frisoni E, Sagné E, Baranowski E, Breton M, Nouvel LX et al. Chromosomal transfers in mycoplasmas: when minimal genomes go mobile. mBio 2014; 5:e01958 [View Article] [PubMed]
    [Google Scholar]
  12. Baranowski E, Dordet-Frisoni E, Sagné E, Hygonenq M-C, Pretre G et al. The Integrative Conjugative Element (ICE) of Mycoplasma agalactiae: key elements involved in horizontal dissemination and influence of coresident ICEs. mBio 2018; 9:00873–18 [View Article] [PubMed]
    [Google Scholar]
  13. Faucher M, Nouvel L-X, Dordet-Frisoni E, Sagné E, Baranowski E et al. Mycoplasmas under experimental antimicrobial selection: The unpredicted contribution of horizontal chromosomal transfer. PLoS Genet 2019; 15:e1007910 [View Article] [PubMed]
    [Google Scholar]
  14. Dordet-Frisoni E, Faucher M, Sagné E, Baranowski E, Tardy F et al. Mycoplasma chromosomal transfer: a distributive, conjugative process creating an infinite variety of mosaic genomes. Front Microbiol 2019; 10:2441 [View Article] [PubMed]
    [Google Scholar]
  15. Derbyshire KM, Gray TA. Distributive conjugal transfer: new insights into horizontal gene transfer and genetic exchange in mycobacteria. Microbiol Spectr 2014; 2:04 [View Article]
    [Google Scholar]
  16. Gray TA, Derbyshire KM. Blending genomes: distributive conjugal transfer in mycobacteria, a sexier form of HGT. Mol Microbiol 2018; 108:601–613 [View Article] [PubMed]
    [Google Scholar]
  17. Oliveira PH, Touchon M, Rocha EPC. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res 2014; 42:10618–10631 [View Article] [PubMed]
    [Google Scholar]
  18. Oliveira PH, Touchon M, Rocha EPC. Regulation of genetic flux between bacteria by restriction-modification systems. Proc Natl Acad Sci U S A 2016; 113:5658–5663 [View Article] [PubMed]
    [Google Scholar]
  19. Nouvel LX, Sirand-Pugnet P, Marenda MS, Sagné E, Barbe V et al. Comparative genomic and proteomic analyses of two Mycoplasma agalactiae strains: clues to the macro- and micro-events that are shaping mycoplasma diversity. BMC Genomics 2010; 11:86 [View Article] [PubMed]
    [Google Scholar]
  20. Beaulaurier J, Schadt EE, Fang G. Deciphering bacterial epigenomes using modern sequencing technologies. Nat Rev Genet 2019; 20:157–172 [View Article] [PubMed]
    [Google Scholar]
  21. Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG, Murray NE. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Research 2014; 42:3–19 [View Article] [PubMed]
    [Google Scholar]
  22. Sánchez-Romero MA, Casadesús J. The bacterial epigenome. Nat Rev Microbiol 2019; 18:7–20 [View Article] [PubMed]
    [Google Scholar]
  23. Zhang W, Baseman JB. Transcriptional response of Mycoplasma genitalium to osmotic stress. Microbiology 2011; 157:548–556 [View Article] [PubMed]
    [Google Scholar]
  24. Zhang W, Baseman JB. Transcriptional regulation of MG_149, an osmoinducible lipoprotein gene from Mycoplasma genitalium . Molecular Microbiology 2011; 81:327–339 [View Article] [PubMed]
    [Google Scholar]
  25. Güell M, van Noort V, Yus E, Chen W-H, Leigh-Bell J et al. Transcriptome complexity in a genome-reduced bacterium. Science 2009; 326:1268–1271 [View Article] [PubMed]
    [Google Scholar]
  26. Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE--a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 2015; 43:D298–9 [View Article] [PubMed]
    [Google Scholar]
  27. Chen P, Bandoy DJD, Weimer BC. Bacterial epigenomics: epigenetics in the age of population genomics. In Tettelin H, Medini D. eds Pangenome Divers. Dyn. Evol, Genomes, Cham Springer International Publishing; 2020 pp 233–252
    [Google Scholar]
  28. Lluch-Senar M, Luong K, Lloréns-Rico V, Delgado J, Fang G et al. Comprehensive methylome characterization of Mycoplasma genitalium and Mycoplasma pneumoniae at single-base resolution. PLoS Genet 2013; 9:e1003191 [View Article] [PubMed]
    [Google Scholar]
  29. Blow MJ, Clark TA, Daum CG, Deutschbauer AM, Fomenkov A et al. The epigenomic landscape of prokaryotes. PLoS Genet 2016; 12:e1005854 [View Article] [PubMed]
    [Google Scholar]
  30. Deininger P. eds Molecular cloning: A laboratory manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989
    [Google Scholar]
  31. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  32. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P et al. Artemis: sequence visualization and annotation. Bioinformatics 2000; 16:944–945 [View Article] [PubMed]
    [Google Scholar]
  33. Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG et al. ACT: the Artemis Comparison Tool. Bioinformatics 2005; 21:3422–3423 [View Article] [PubMed]
    [Google Scholar]
  34. Baranowski E, Guiral S, Sagné E, Skapski A, Citti C. Critical role of dispensable genes in Mycoplasma agalactiae interaction with mammalian cells. Infect Immun 2010; 78:1542–1551 [View Article] [PubMed]
    [Google Scholar]
  35. Zimmerman C-U, Herrmann R. Synthesis of a small, cysteine-rich, 29 amino acids long peptide in Mycoplasma pneumoniae . FEMS Microbiol Lett 2005; 253:315–321 [View Article] [PubMed]
    [Google Scholar]
  36. Rideau F, Le Roy C, Sagné E, Renaudin H, Pereyre S et al. Random transposon insertion in the Mycoplasma hominis minimal genome. Sci Rep 2019; 9:13554 [View Article] [PubMed]
    [Google Scholar]
  37. Dybvig K, Sitaraman R, French CT. A family of phase-variable restriction enzymes with differing specificities generated by high-frequency gene rearrangements. Proc Natl Acad Sci U S A 1998; 95:13923–13928 [View Article] [PubMed]
    [Google Scholar]
  38. Atack JM, Guo C, Yang L, Zhou Y, Jennings MP. DNA sequence repeats identify numerous Type I restriction-modification systems that are potential epigenetic regulators controlling phase-variable regulons; phasevarions. FASEB J 2020; 34:1038–1051 [View Article] [PubMed]
    [Google Scholar]
  39. Murray NE. Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol Mol Biol Rev 2000; 64:412–434 [View Article] [PubMed]
    [Google Scholar]
  40. Casadesús J, Low D. Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev 2006; 70:830–856 [View Article] [PubMed]
    [Google Scholar]
  41. Clark TA, Murray IA, Morgan RD, Kislyuk AO, Spittle KE et al. Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res 2012; 40:e29 [View Article] [PubMed]
    [Google Scholar]
  42. Jeltsch A. The cytosine N4-methyltransferase M.PvuII also modifies adenine residues. Biol Chem 2001; 382:707–710 [View Article] [PubMed]
    [Google Scholar]
  43. Jeltsch A, Christ F, Fatemi M, Roth M. On the substrate specificity of DNA methyltransferases. Journal of Biological Chemistry 1999; 274:19538–19544 [View Article] [PubMed]
    [Google Scholar]
  44. Atack JM, Yang Y, Seib KL, Zhou Y, Jennings MP. A survey of Type III restriction-modification systems reveals numerous, novel epigenetic regulators controlling phase-variable regulons; phasevarions. Nucleic Acids Res 2018; 46:3532–3542 [View Article] [PubMed]
    [Google Scholar]
  45. Atack JM, Tan A, Bakaletz LO, Jennings MP, Seib KL. Phasevarions of bacterial pathogens: methylomics sheds new light on old enemies. Trends Microbiol 2018; 26:715–726 [View Article] [PubMed]
    [Google Scholar]
  46. Gupta YK, Chan S-H, Xu S-Y, Aggarwal AK. Structural basis of asymmetric DNA methylation and ATP-triggered long-range diffusion by EcoP15I. Nat Commun 2015; 6:7363 [View Article] [PubMed]
    [Google Scholar]
  47. Rao DN, Dryden DTF, Bheemanaik S. Type III restriction-modification enzymes: a historical perspective. Nucleic Acids Res 2014; 42:45–55 [View Article] [PubMed]
    [Google Scholar]
  48. Renbaum P, Abrahamove D, Fainsod A, Wilson GG, Rottem S et al. Cloning, characterization, and expression in Escherichia coli of the gene coding for the CpG DNA methylase from Spiroplasma sp. strain MQ1(M.SssI). Nucleic Acids Res 1990; 18:1145–1152 [View Article] [PubMed]
    [Google Scholar]
  49. Wojciechowski M, Czapinska H, Bochtler M. CpG underrepresentation and the bacterial CpG-specific DNA methyltransferase M.MpeI. Proc Natl Acad Sci U S A 2013; 110:105–110 [View Article] [PubMed]
    [Google Scholar]
  50. Chernov AV, Reyes L, Xu Z, Gonzalez B, Golovko G et al. Mycoplasma CG- and GATC-specific DNA methyltransferases selectively and efficiently methylate the host genome and alter the epigenetic landscape in human cells. Epigenetics 2015; 10:303–318 [View Article] [PubMed]
    [Google Scholar]
  51. Goto M, Washio T, Tomita M. Causal analysis of CpG suppression in the Mycoplasma genome. Microb Comp Genomics 2000; 5:51–58 [View Article] [PubMed]
    [Google Scholar]
  52. Renbaum P, Razin A. Mode of action of the Spiroplasma CpG methylase M.SssI. FEBS Lett 1992; 313:243–247 [View Article] [PubMed]
    [Google Scholar]
  53. Hegde S, Gabriel C, Kragl M, Chopra-Dewasthaly R. Sheep primary cells as in vitro models to investigate Mycoplasma agalactiae host cell interactions. Pathog Dis 2015; 73:ftv048 [View Article] [PubMed]
    [Google Scholar]
  54. Sobetzko P, Jelonek L, Strickert M, Han W, Goesmann A et al. DistAMo: a web-based tool to characterize DNA-Motif distribution on bacterial chromosomes. Front Microbiol 2016; 7:283 [View Article] [PubMed]
    [Google Scholar]
  55. Algire MA, Lartigue C, Thomas DW, Assad-Garcia N, Glass JI et al. New selectable marker for manipulating the simple genomes of Mycoplasma species. Antimicrob Agents Chemother 2009; 53:4429–4432 [View Article] [PubMed]
    [Google Scholar]
  56. Citti C, Dordet-Frisoni E, Nouvel LX, Kuo CH, Baranowski E. Horizontal gene transfers in mycoplasmas (Mollicutes). Curr Issues Mol Biol 2018; 29:3–22 [View Article] [PubMed]
    [Google Scholar]
  57. Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev 2013; 77:53–72 [View Article] [PubMed]
    [Google Scholar]
  58. Arber W. Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiol Rev 2000; 24:1–7 [View Article] [PubMed]
    [Google Scholar]
  59. Tardy F, Mick V, Dordet-Frisoni E, Marenda MS, Sirand-Pugnet P et al. Integrative conjugative elements are widespread in field isolates of Mycoplasma species pathogenic for ruminants. Appl Environ Microbiol 2015; 81:1634–1643 [View Article] [PubMed]
    [Google Scholar]
  60. Tardy F, Baranowski E, Nouvel L-X, Mick V, Manso-Silvàn L et al. Emergence of atypical Mycoplasma agalactiae strains harboring a new prophage and associated with an alpine wild ungulate mortality episode. Appl Environ Microbiol 2012; 78:4659–4668 [View Article] [PubMed]
    [Google Scholar]
  61. Mahdizadeh S, Sansom FM, Lee S-W, Browning GF, Marenda MS. Targeted mutagenesis of Mycoplasma gallisepticum using its endogenous CRISPR/Cas system. Vet Microbiol 2020; 250:108868 [View Article] [PubMed]
    [Google Scholar]
  62. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315:1709–1712 [View Article] [PubMed]
    [Google Scholar]
  63. Oliveira PH, Fang G. Conserved DNA methyltransferases: a window into fundamental mechanisms of epigenetic regulation in bacteria. Trends Microbiol 2021; 29:28–40 [View Article] [PubMed]
    [Google Scholar]
  64. Citti C, Nouvel L-X, Baranowski E. Phase and antigenic variation in mycoplasmas. Future Microbiol 2010; 5:1073–1085 [View Article] [PubMed]
    [Google Scholar]
  65. Huang X, Wang J, Li J, Liu Y, Liu X et al. Prevalence of phase variable epigenetic invertons among host-associated bacteria. Nucleic Acids Res 2020; 48:11468–11485 [View Article] [PubMed]
    [Google Scholar]
  66. Nouvel L-X, Marenda MS, Glew MD, Sagné E, Giammarinaro P et al. Molecular typing of Mycoplasma agalactiae: tracing European-wide genetic diversity and an endemic clonal population. Comp Immunol Microbiol Infect Dis 2012; 35:487–496 [View Article] [PubMed]
    [Google Scholar]
  67. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000829
Loading
/content/journal/mgen/10.1099/mgen.0.000829
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error