1887

Abstract

Early disease detection is a prerequisite for enacting effective interventions for disease control. Strains of the bacterial plant pathogen have recurrently spread to new crops in new countries causing devastating outbreaks. So far, investigation of outbreak strains and highly resolved phylogenetic reconstruction have required whole-genome sequencing of pure bacterial cultures, which are challenging to obtain due to the fastidious nature of . Here, we show that culture-independent metagenomic sequencing, using the Oxford Nanopore Technologies MinION long-read sequencer, can sensitively and specifically detect the causative agent of Pierce’s disease of grapevine, subspecies . Using a DNA sample from a grapevine in Virginia, USA, it was possible to obtain a metagenome-assembled genome (MAG) of sufficient quality for phylogenetic reconstruction with SNP resolution. The analysis placed the MAG in a clade with isolates from Georgia, USA, suggesting introduction of subspecies to Virginia from the south-eastern USA. This proof of concept study, thus, revealed that metagenomic sequencing can replace culture-dependent genome sequencing for reconstructing transmission routes of bacterial plant pathogens.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000822
2022-05-18
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/5/mgen000822.html?itemId=/content/journal/mgen/10.1099/mgen.0.000822&mimeType=html&fmt=ahah

References

  1. Ristaino JB, Anderson PK, Bebber DP, Brauman KA, Cunniffe NJ et al. The persistent threat of emerging plant disease pandemics to global food security. Proc Natl Acad Sci USA 2021; 118:e2022239118 [View Article] [PubMed]
    [Google Scholar]
  2. Schneider K, Mourits M, van der Werf W, Lansink AO. On consumer impact from Xylella fastidiosa subspecies pauca . Ecol Econ 2021; 185:107024 [View Article]
    [Google Scholar]
  3. European Food Safety Authority (EFSA) Update of the Xylella spp. host plant database. EFSA J 2018; 16:e05408 [View Article]
    [Google Scholar]
  4. Nunney L, Yuan X, Bromley R, Hartung J, Montero-Astúa M et al. Population genomic analysis of a bacterial plant pathogen: novel insight into the origin of Pierce’s disease of grapevine in the U.S. PLoS One 2010; 5:e15488 [View Article] [PubMed]
    [Google Scholar]
  5. Castillo AI, Bojanini I, Chen H, Kandel PP, De La Fuente L et al. Allopatric plant pathogen population divergence following disease emergence. Appl Environ Microbiol 2021; 87:e02095-20 [View Article] [PubMed]
    [Google Scholar]
  6. Coletta-Filho HD, Castillo AI, Laranjeira FF, de Andrade EC, Silva NT et al. Citrus variegated chlorosis: an overview of 30 years of research and disease management. Trop Plant Pathol 2020; 45:175–191 [View Article]
    [Google Scholar]
  7. Schneider K, van der Werf W, Cendoya M, Mourits M, Navas-Cortés JA et al. Impact of Xylella fastidiosa subspecies pauca in European olives. Proc Natl Acad Sci U SA 2020; 117:9250–9259
    [Google Scholar]
  8. Purcell AH, Hopkins DL. Fastidious xylem-limited bacterial plant pathogens. Annu Rev Phytopathol 1996; 34:131–151 [View Article] [PubMed]
    [Google Scholar]
  9. Chatterjee S, Almeida RPP, Lindow S. Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa . Annu Rev Phytopathol 2008; 46:243–271 [View Article] [PubMed]
    [Google Scholar]
  10. Sicard A, Zeilinger AR, Vanhove M, Schartel TE, Beal DJ et al. Xylella fastidiosa: insights into an emerging plant pathogen. Annu Rev Phytopathol 2018; 56:181–202 [View Article] [PubMed]
    [Google Scholar]
  11. Kyrkou I, Pusa T, Ellegaard-Jensen L, Sagot M-F, Hansen LH. Pierce’s disease of grapevines: a review of control strategies and an outline of an epidemiological model. Front Microbiol 2018; 9:2141 [View Article] [PubMed]
    [Google Scholar]
  12. Baldi P, La Porta N. Xylella fastidiosa: host range and advance in molecular identification techniques. Front Plant Sci 2017; 8:944 [View Article] [PubMed]
    [Google Scholar]
  13. Dupas E, Briand M, Jacques M-A, Cesbron S. Novel tetraplex quantitative PCR assays for simultaneous detection and identification of Xylella fastidiosa subspecies in plant tissues. Front Plant Sci 2019; 10:1732 [View Article] [PubMed]
    [Google Scholar]
  14. Cesbron S, Dupas E, Beaurepère Q, Briand M, Montes-Borrego M et al. Development of a nested-multilocus sequence typing approach for a highly sensitive and specific identification of Xylella fastidiosa subspecies directly from plant samples. Agronomy 2020; 10:1099 [View Article]
    [Google Scholar]
  15. Hogenhout SA, Oshima K, Ammar E-D, Kakizawa S, Kingdom HN et al. Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 2008; 9:403–423 [View Article] [PubMed]
    [Google Scholar]
  16. Piombo E, Abdelfattah A, Droby S, Wisniewski M, Spadaro D et al. Metagenomics approaches for the detection and surveillance of emerging and recurrent plant pathogens. Microorganisms 2021; 9:188 [View Article] [PubMed]
    [Google Scholar]
  17. Bonants P, Griekspoor Y, Houwers I, Krijger M, van der Zouwen P et al. Development and evaluation of a triplex taqman assay and next-generation sequence analysis for improved detection of Xylella in plant material. Plant Dis 2019; 103:645–655 [View Article] [PubMed]
    [Google Scholar]
  18. Román-Reyna V, Dupas E, Cesbron S, Marchi G, Campigli S et al. Metagenomic sequencing for identification of Xylella fastidiosa from leaf samples. mSystems 2021; 6:e0059121 [View Article] [PubMed]
    [Google Scholar]
  19. Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol 2016; 17:239 [View Article] [PubMed]
    [Google Scholar]
  20. Moss EL, Maghini DG, Bhatt AS. Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nat Biotechnol 2020; 38:701–707 [View Article] [PubMed]
    [Google Scholar]
  21. Mechan Llontop ME, Sharma P, Aguilera Flores M, Yang S, Pollok J et al. Strain-level identification of bacterial tomato pathogens directly from metagenomic sequences. Phytopathology 2020; 110:768–779 [View Article] [PubMed]
    [Google Scholar]
  22. Delahaye C, Nicolas J. Sequencing DNA with nanopores: troubles and biases. PLoS One 2021; 16:e0257521 [View Article] [PubMed]
    [Google Scholar]
  23. Ciuffreda L, Rodríguez-Pérez H, Flores C. Nanopore sequencing and its application to the study of microbial communities. Comput Struct Biotechnol J 2021; 19:1497–1511 [View Article] [PubMed]
    [Google Scholar]
  24. Buytaers FE, Saltykova A, Denayer S, Verhaegen B, Vanneste K et al. Towards real-time and affordable strain-level metagenomics-based foodborne outbreak investigations using Oxford nanopore sequencing technologies. Front Microbiol 2021; 12:738284 [View Article] [PubMed]
    [Google Scholar]
  25. Tian L, Huang C, Mazloom R, Heath LS, Vinatzer BA. LINbase: a web server for genome-based identification of prokaryotes as members of crowdsourced taxa. Nucleic Acids Res 2020; 48:W529–W537 [View Article] [PubMed]
    [Google Scholar]
  26. Valsesia G, Gobbin D, Patocchi A, Vecchione A, Pertot I et al. Development of a high-throughput method for quantification of Plasmopara viticola DNA in grapevine leaves by means of quantitative real-time polymerase chain reaction. Phytopathology 2005; 95:672–678 [View Article] [PubMed]
    [Google Scholar]
  27. Harper SJ, Ward LI, Clover GRG. Development of LAMP and real-time PCR methods for the rapid detection of Xylella fastidiosa for quarantine and field applications. Phytopathology 2010; 100:1282–1288 [View Article] [PubMed]
    [Google Scholar]
  28. What’s in my Pot? (WIMP), a quantitative analysis tool for real-time species identification; 2021 https://nanoporetech.com/resource-centre/whats-my-pot-wimp-quantitative-analysis-tool-real-time-species-identification accessed 26 August 2017
  29. Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res 2016; 26:1721–1729 [View Article] [PubMed]
    [Google Scholar]
  30. Bailey TL, Johnson J, Grant CE, Noble WS. The MEME Suite. Nucleic Acids Res 2015; 43:W39–W49 [View Article] [PubMed]
    [Google Scholar]
  31. Pierce NT, Irber L, Reiter T, Brooks P, Brown CT. Large-scale sequence comparisons with sourmash. F1000Res 2019; 8:1006 [View Article]
    [Google Scholar]
  32. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Curr Protoc Bioinformatics 2020; 70:e102 [View Article] [PubMed]
    [Google Scholar]
  33. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  34. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  36. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  37. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  38. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  39. Yu G, Smith DK, Zhu H, Guan Y, Lam T-Y. Ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 2017; 8:28–36
    [Google Scholar]
  40. Harris SR. SKA: split kmer analysis toolkit for bacterial genomic epidemiology. bioRxiv 2018453142 [View Article]
    [Google Scholar]
  41. Seemann T. Snippy: Rapid Haploid Variant Calling and Core Genome Alignment; 2015 https://github.com/tseemann/snippy
  42. Titus Brown C, Irber L. sourmash: a library for MinHash sketching of DNA. JOSS 2016; 1:27 [View Article]
    [Google Scholar]
  43. Analysis solutions for nanopore sequencing data; 2021 https://nanoporetech.com/nanopore-sequencing-data-analysis
  44. Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat Methods 2020; 17:1103–1110 [View Article] [PubMed]
    [Google Scholar]
  45. Faino L, Scala V, Albanese A, Modesti V, Grottoli A et al. Nanopore sequencing for the detection and identification of Xylella fastidiosa subspecies and sequence types from naturally infected plant material. Plant Pathol 2021; 70:1860–1870 [View Article]
    [Google Scholar]
  46. Román-Reyna V, Dupas E, Cesbron S, Marchi G, Campigli S et al. Metagenomic sequencing for identification of Xylella fastidiosa from leaf samples. mSystems 2021; 6:e0059121 [View Article]
    [Google Scholar]
  47. Yuan X, Morano L, Bromley R, Spring-Pearson S, Stouthamer R et al. Multilocus sequence typing of Xylella fastidiosa causing Pierce’s disease and oleander leaf scorch in the United States. Phytopathology 2010; 100:601–611 [View Article] [PubMed]
    [Google Scholar]
  48. Potnis N, Kandel PP, Merfa MV, Retchless AC, Parker JK et al. Patterns of inter- and intrasubspecific homologous recombination inform eco-evolutionary dynamics of Xylella fastidiosa . ISME J 2019; 13:2319–2333 [View Article] [PubMed]
    [Google Scholar]
  49. Nattestad M, Aboukhalil R, Chin C-S, Schatz MC. Ribbon: intuitive visualization for complex genomic variation. Bioinformatics 2021; 37:413–415 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000822
Loading
/content/journal/mgen/10.1099/mgen.0.000822
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

EXCEL

Supplementary material 3

EXCEL

Supplementary material 4

EXCEL

Supplementary material 5

EXCEL

Supplementary material 6

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error