1887

Abstract

Small and intermediate-size noncoding RNAs (sRNAs and is-ncRNAs) have been shown to play important regulatory roles in the development of several eukaryotic organisms. However, they have not been thoroughly explored in , an obligate zoonotic protist parasite responsible for the diarrhoeal disease cryptosporidiosis. Using Illumina sequencing of a small RNA library, a systematic identification of novel small and is-ncRNAs was performed in excysted sporozoites. A total of 79 novel is-ncRNA candidates, including antisense, intergenic and intronic is-ncRNAs, were identified, including 7 new small nucleolar RNAs (snoRNAs). Expression of select novel is-ncRNAs was confirmed by RT-PCR. Phylogenetic conservation was analysed using covariance models (CMs) in related and apicomplexan parasite genome sequences. A potential new type of small ncRNA derived from tRNA fragments was observed. Overall, a deep profiling analysis of novel is-ncRNAs in and related species revealed structural features and conservation of these novel is-ncRNAs. Covariance models can be used to detect is-ncRNA genes in other closely related parasites. These findings provide important new sequences for additional functional characterization of novel is-ncRNAs in the protist pathogen .

Funding
This study was supported by the:
  • National Institutes of Health (US) (Award NIH 1R21AI144779)
    • Principle Award Recipient: JessicaC Kissinger
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000821
2022-05-10
2022-05-24
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/5/mgen000821.html?itemId=/content/journal/mgen/10.1099/mgen.0.000821&mimeType=html&fmt=ahah

References

  1. Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 2014; 157:77–94 [View Article] [PubMed]
    [Google Scholar]
  2. Losko M, Kotlinowski J, Jura J. Long noncoding RNAs in metabolic syndrome related disorders. Mediators Inflamm 2016; 2016:5365209 [View Article] [PubMed]
    [Google Scholar]
  3. Matrajt M. Non-coding RNA in apicomplexan parasites. Mol Biochem Parasitol 2010; 174:1–7 [View Article] [PubMed]
    [Google Scholar]
  4. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 2010; 79:351–379 [View Article] [PubMed]
    [Google Scholar]
  5. Anderson P, Ivanov P. tRNA fragments in human health and disease. FEBS Lett 2014; 588:4297–4304 [View Article] [PubMed]
    [Google Scholar]
  6. Falaleeva M, Stamm S. Processing of snoRNAs as a new source of regulatory non-coding RNAs: snoRNA fragments form a new class of functional RNAs. Bioessays 2013; 35:46–54 [View Article] [PubMed]
    [Google Scholar]
  7. Zhang X, Wang W, Zhu W, Dong J, Cheng Y et al. Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int J Mol Sci 2019; 20:22 [View Article] [PubMed]
    [Google Scholar]
  8. Li Y, Baptista RP, Kissinger JC. Noncoding RNAs in apicomplexan parasites: an update. Trends Parasitol 2020; 36:835–849 [View Article] [PubMed]
    [Google Scholar]
  9. Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 2021; 22:96–118 [View Article] [PubMed]
    [Google Scholar]
  10. Li Y, Baptista RP, Sateriale A, Striepen B, Kissinger JC. Analysis of long non-coding RNA in Cryptosporidium parvum reveals significant stage-specific antisense transcription. Front Cell Infect Microbiol 2020; 10:608298 [View Article] [PubMed]
    [Google Scholar]
  11. Wang Y, Chen J, Wei G, He H, Zhu X et al. The Caenorhabditis elegans intermediate-size transcriptome shows high degree of stage-specific expression. Nucleic Acids Res 2011; 39:5203–5214 [View Article] [PubMed]
    [Google Scholar]
  12. Wei C, Xiao T, Zhang P, Wang Z, Chen X et al. Deep profiling of the novel intermediate-size noncoding RNAs in intraerythrocytic Plasmodium falciparum. PLoS One 2014; 9:e92946 [View Article] [PubMed]
    [Google Scholar]
  13. Yan D, He D, He S, Chen X, Fan Z et al. Identification and analysis of intermediate size noncoding RNAs in the human fetal brain. PLoS One 2011; 6:e21652 [View Article] [PubMed]
    [Google Scholar]
  14. St Laurent G 3rd, Wahlestedt C. Noncoding RNAs: couplers of analog and digital information in nervous system function?. Trends Neurosci 2007; 30:612–621 [View Article] [PubMed]
    [Google Scholar]
  15. Bouzid M, Hunter PR, Chalmers RM, Tyler KM. Cryptosporidium pathogenicity and virulence. Clin Microbiol Rev 2013; 26:115–134 [View Article] [PubMed]
    [Google Scholar]
  16. Checkley W, White AC, Jaganath D, Arrowood MJ, Chalmers RM et al. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. Lancet Infect Dis 2015; 15:85–94 [View Article]
    [Google Scholar]
  17. Pumipuntu N, Piratae S. Cryptosporidiosis: A zoonotic disease concern. Vet World 2018; 11:681–686 [View Article]
    [Google Scholar]
  18. Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G et al. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 2004; 304:441–445 [View Article]
    [Google Scholar]
  19. Pawlowic MC, Somepalli M, Sateriale A, Herbert GT, Gibson AR et al. Genetic ablation of purine salvage in Cryptosporidium parvum reveals nucleotide uptake from the host cell. Proc Natl Acad Sci USA 2019; 116:21160–21165 [View Article] [PubMed]
    [Google Scholar]
  20. Mauzy MJ, Enomoto S, Lancto CA, Abrahamsen MS, Rutherford MS. The Cryptosporidium parvum transcriptome during in vitro development. PLoS One 2012; 7:e31715 [View Article]
    [Google Scholar]
  21. Mirhashemi ME, Noubary F, Chapman-Bonofiglio S, Tzipori S, Huggins GS et al. Transcriptome analysis of pig intestinal cell monolayers infected with Cryptosporidium parvum asexual stages. Parasit Vectors 2018; 11:176 [View Article] [PubMed]
    [Google Scholar]
  22. Tandel J, English ED, Sateriale A, Gullicksrud JA, Beiting DP et al. Life cycle progression and sexual development of the apicomplexan parasite Cryptosporidium parvum. Nat Microbiol 2019; 4:2226–2236 [View Article] [PubMed]
    [Google Scholar]
  23. Vinayak S, Pawlowic MC, Sateriale A, Brooks CF, Studstill CJ et al. Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum. Nature 2015; 523:477–480 [View Article] [PubMed]
    [Google Scholar]
  24. Keeling PJ. Reduction and compaction in the genome of the apicomplexan parasite Cryptosporidium parvum. Dev Cell 2004; 6:614–616 [View Article] [PubMed]
    [Google Scholar]
  25. Ahsan MI, Chowdhury MSR, Das M, Akter S, Roy S et al. In silico identification and functional characterization of conserved miRNAs in the genome of Cryptosporidium parvum. Bioinform Biol Insights 2021; 15:11779322211027665 [View Article] [PubMed]
    [Google Scholar]
  26. Nawaz MZ, Jian H, He Y, Xiong L, Xiao X et al. Genome-wide detection of small regulatory RNAs in deep-sea bacterium Shewanella piezotolerans WP3. Front Microbiol 2017; 8:1093 [View Article] [PubMed]
    [Google Scholar]
  27. Washietl S, Hofacker IL, Lukasser M, Hüttenhofer A, Stadler PF. Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat Biotechnol 2005; 23:1383–1390 [View Article] [PubMed]
    [Google Scholar]
  28. Ferrero G, Cordero F, Tarallo S, Arigoni M, Riccardo F et al. Small non-coding RNA profiling in human biofluids and surrogate tissues from healthy individuals: description of the diverse and most represented species. Oncotarget 2018; 9:3097–3111 [View Article] [PubMed]
    [Google Scholar]
  29. Dard-Dascot C, Naquin D, d’Aubenton-Carafa Y, Alix K, Thermes C et al. Systematic comparison of small RNA library preparation protocols for next-generation sequencing. BMC Genomics 2018; 19:118 [View Article] [PubMed]
    [Google Scholar]
  30. Gruber AR, Findeiß S, Washietl S, Hofacker IL, Stadler PF. RNAz 2.0: improved noncoding RNA detection. Pac Symp Biocomput 201069–79 [View Article]
    [Google Scholar]
  31. Heiges M, Wang H, Robinson E, Aurrecoechea C, Gao X et al. CryptoDB: a Cryptosporidium bioinformatics resource update. Nucleic Acids Res 2006; 34:D419–22 [View Article] [PubMed]
    [Google Scholar]
  32. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j 2011; 17:10 [View Article]
    [Google Scholar]
  33. Kalvari I, Nawrocki EP, Argasinska J, Quinones-Olvera N, Finn RD et al. Non-coding RNA analysis using the Rfam database. Curr Protoc Bioinformatics 2018; 62:e51 [View Article] [PubMed]
    [Google Scholar]
  34. Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 2013; 29:2933–2935 [View Article] [PubMed]
    [Google Scholar]
  35. Baptista RP, Li Y, Sateriale A, Sanders MJ, Brooks KL et al. Long-read assembly and comparative evidence-based reanalysis of Cryptosporidium genome sequences reveal expanded transporter repertoire and duplication of entire chromosome ends including subtelomeric regions. Genome Res 2022; 32:203–213 [View Article] [PubMed]
    [Google Scholar]
  36. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article] [PubMed]
    [Google Scholar]
  37. Langmead B. Aligning short sequencing reads with Bowtie. Curr Protoc Bioinformatics 2010; Chapter 11:Unit [View Article] [PubMed]
    [Google Scholar]
  38. Langenberger D, Bermudez-Santana C, Hertel J, Hoffmann S, Khaitovich P et al. Evidence for human microRNA-offset RNAs in small RNA sequencing data. Bioinformatics 2009; 25:2298–2301 [View Article] [PubMed]
    [Google Scholar]
  39. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 2012; 9:811–814 [View Article] [PubMed]
    [Google Scholar]
  40. Altschul SF, Boguski MS, Gish W, Wootton JC. Issues in searching molecular sequence databases. Nat Genet 1994; 6:119–129 [View Article] [PubMed]
    [Google Scholar]
  41. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26:841–842 [View Article] [PubMed]
    [Google Scholar]
  42. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  43. Derrien T, Estellé J, Marco Sola S, Knowles DG, Raineri E et al. Fast computation and applications of genome mappability. PLoS One 2012; 7:e30377 [View Article] [PubMed]
    [Google Scholar]
  44. Will S, Joshi T, Hofacker IL, Stadler PF, Backofen R. LocARNA-P: accurate boundary prediction and improved detection of structural RNAs. RNA 2012; 18:900–914 [View Article] [PubMed]
    [Google Scholar]
  45. Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R. Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput Biol 2007; 3:e65 [View Article] [PubMed]
    [Google Scholar]
  46. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article] [PubMed]
    [Google Scholar]
  47. Lowe TM, Eddy SR. A computational screen for methylation guide snoRNAs in yeast. Science 1999; 283:1168–1171 [View Article] [PubMed]
    [Google Scholar]
  48. de Araujo Oliveira JV, Costa F, Backofen R, Stadler PF, Machado Telles Walter ME et al. SnoReport 2.0: new features and a refined Support Vector Machine to improve snoRNA identification. BMC Bioinformatics 2016; 17:464 [View Article] [PubMed]
    [Google Scholar]
  49. Lorenz R, Bernhart SH, Höner Zu Siederdissen C, Tafer H, Flamm C et al. ViennaRNA Package 2.0. Algorithms Mol Biol 2011; 6:26 [View Article] [PubMed]
    [Google Scholar]
  50. Darty K, Denise A, Ponty Y. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 2009; 25:1974–1975 [View Article] [PubMed]
    [Google Scholar]
  51. Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 2012; 40:37–52 [View Article] [PubMed]
    [Google Scholar]
  52. Loher P, Telonis AG, Rigoutsos I. MINTmap: fast and exhaustive profiling of nuclear and mitochondrial tRNA fragments from short RNA-seq data. Sci Rep 2017; 7:41184 [View Article] [PubMed]
    [Google Scholar]
  53. Xie Y, Yao L, Yu X, Ruan Y, Li Z et al. Action mechanisms and research methods of tRNA-derived small RNAs. Signal Transduct Target Ther 2020; 5:109 [View Article] [PubMed]
    [Google Scholar]
  54. Molla-Herman A, Angelova MT, Ginestet M, Carré C, Antoniewski C et al. tRNA fragments populations analysis in mutants affecting tRNAs processing and tRNA methylation. Front Genet 2020; 11:518949 [View Article] [PubMed]
    [Google Scholar]
  55. Eddy SR, Durbin R. RNA sequence analysis using covariance models. Nucleic Acids Res 1994; 22:2079–2088 [View Article] [PubMed]
    [Google Scholar]
  56. Šlapeta J. Cryptosporidiosis and Cryptosporidium species in animals and humans: a thirty colour rainbow?. Int J Parasitol 2013; 43:957–970 [View Article] [PubMed]
    [Google Scholar]
  57. Panda AC, De S, Grammatikakis I, Munk R, Yang X et al. High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Res 2017; 45:12 [View Article] [PubMed]
    [Google Scholar]
  58. Bevilacqua PC, Ritchey LE, Su Z, Assmann SM. Genome-wide analysis of RNA secondary structure. Annu Rev Genet 2016; 50:235–266 [View Article] [PubMed]
    [Google Scholar]
  59. Schlick T, Pyle AM. Opportunities and challenges in RNA structural modeling and design. Biophys J 2017; 113:225–234 [View Article] [PubMed]
    [Google Scholar]
  60. Wickiser JK, Winkler WC, Breaker RR, Crothers DM. The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol Cell 2005; 18:49–60 [View Article] [PubMed]
    [Google Scholar]
  61. Li F, Zheng Q, Vandivier LE, Willmann MR, Chen Y et al. Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome. Plant Cell 2012; 24:4346–4359 [View Article] [PubMed]
    [Google Scholar]
  62. Wan Y, Qu K, Ouyang Z, Kertesz M, Li J et al. Genome-wide measurement of RNA folding energies. Mol Cell 2012; 48:169–181 [View Article] [PubMed]
    [Google Scholar]
  63. Makarova JA, Kramerov DA. Analysis of C/D box snoRNA genes in vertebrates: The number of copies decreases in placental mammals. Genomics 2009; 94:11–19 [View Article] [PubMed]
    [Google Scholar]
  64. Leader DJ, Clark GP, Watters J, Beven AF, Shaw PJ et al. Clusters of multiple different small nucleolar RNA genes in plants are expressed as and processed from polycistronic pre-snoRNAs. EMBO J 1997; 16:5742–5751 [View Article] [PubMed]
    [Google Scholar]
  65. Waldl M, Will S, Wolfinger MT, Hofacker IL, Stadler PF. Bi-alignments as models of incongruent evolution of RNA sequence and structure. Bioinformatics 2019631606 [View Article]
    [Google Scholar]
  66. Liao J-Y, Guo Y-H, Zheng L-L, Li Y, Xu W-L et al. Both endo-siRNAs and tRNA-derived small RNAs are involved in the differentiation of primitive eukaryote Giardia lamblia. Proc Natl Acad Sci U S A 2014; 111:14159–14164 [View Article] [PubMed]
    [Google Scholar]
  67. Couvillion MT, Sachidanandam R, Collins K. A growth-essential Tetrahymena Piwi protein carries tRNA fragment cargo. Genes Dev 2010; 24:2742–2747 [View Article] [PubMed]
    [Google Scholar]
  68. Fricker R, Brogli R, Luidalepp H, Wyss L, Fasnacht M et al. A tRNA half modulates translation as stress response in Trypanosoma brucei. Nat Commun 2019; 10:118 [View Article] [PubMed]
    [Google Scholar]
  69. Wang Z, Wei C, Hao X, Deng W, Zhang L et al. Genome-wide identification and characterization of transfer RNA-derived small RNAs in Plasmodium falciparum. Parasit Vectors 2019; 12:36 [View Article] [PubMed]
    [Google Scholar]
  70. Green D, Fraser WD, Dalmay T. Transfer RNA-derived small RNAs in the cancer transcriptome. Pflugers Arch 2016; 468:1041–1047 [View Article] [PubMed]
    [Google Scholar]
  71. Li S, Xu Z, Sheng J. tRNA-derived small RNA: a novel regulatory small non-coding RNA. Genes (Basel) 2018; 9:E246 [View Article] [PubMed]
    [Google Scholar]
  72. Kuscu C, Kumar P, Kiran M, Su Z, Malik A et al. tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer-independent manner. RNA 2018; 24:1093–1105 [View Article] [PubMed]
    [Google Scholar]
  73. Lambertz U, Oviedo Ovando ME, Vasconcelos EJR, Unrau PJ, Myler PJ et al. Small RNAs derived from tRNAs and rRNAs are highly enriched in exosomes from both old and new world Leishmania providing evidence for conserved exosomal RNA Packaging. BMC Genomics 2015; 16:151 [View Article] [PubMed]
    [Google Scholar]
  74. Wang Z, Xi J, Hao X, Deng W, Liu J et al. Red blood cells release microparticles containing human argonaute 2 and miRNAs to target genes of Plasmodium falciparum. Emerg Microbes Infect 2017; 6:e75 [View Article] [PubMed]
    [Google Scholar]
  75. Wang Y, Gong A-Y, Ma S, Chen X, Li Y et al. Delivery of parasite RNA transcripts into infected epithelial cells during Cryptosporidium infection and its potential impact on host gene transcription. J Infect Dis 2017; 215:636–643 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000821
Loading
/content/journal/mgen/10.1099/mgen.0.000821
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error