1887

Abstract

is a genus of obligate bacterial endosymbionts that infect a diverse range of arthropod species as well as filarial nematodes, with its single described species, , divided into several ‘supergroups’ based on multilocus sequence typing. strains in mosquitoes have been shown to inhibit the transmission of human pathogens, including malaria parasites and arboviruses. Despite their large host range, strains within the major malaria vectors of the and complexes appear at low density, established solely on PCR-based methods. Questions have been raised as to whether this represents a true endosymbiotic relationship. However, recent definitive evidence for two distinct, high-density strains of supergroup B within and has opened exciting possibilities to explore naturally occurring endosymbionts in for biocontrol strategies to block transmission. Here, we utilize genomic analyses to demonstrate that both strains have retained all key metabolic and transport pathways despite their smaller genome size, with this reduction potentially attributable to degenerated prophage regions. Even with this reduction, we confirmed the presence of cytoplasmic incompatibility (CI) factor genes within both strains, with AnD maintaining intact copies of these genes while the gene was interrupted in AnM, so functional analysis is required to determine whether AnM can induce CI. Additionally, phylogenetic analysis indicates that these strains may have been introduced into these two species via horizontal transmission events, rather than by ancestral acquisition and subsequent loss events in the species complex. These are the first genomes, to our knowledge, that enable us to study the relationship between natural strain malaria parasites and their anopheline hosts.

Funding
This study was supported by the:
  • National Institute for Heatlh Research (Award NIHR2000907)
    • Principle Award Recipient: L HughesGrant
  • UK Research and Innovation (Award 85336)
    • Principle Award Recipient: L HughesGrant
  • UK Research and Innovation (Award 20197)
    • Principle Award Recipient: L HughesGrant
  • Engineering and Physical Sciences Research Council (Award EP/V043811/1)
    • Principle Award Recipient: GrantL Hughes
  • National Institute of Allergy and Infectious Diseases (Award R21AI138074)
    • Principle Award Recipient: GrantL Hughes
  • Biotechnology and Biological Sciences Research Council (Award BB/T001240/1)
    • Principle Award Recipient: GrantL Hughes
  • Royal Society (Award RSWF\R1\180013)
    • Principle Award Recipient: GrantL Hughes
  • Royal Society (Award CHG\R1\170036)
    • Principle Award Recipient: ThomasWalker
  • Wellcome Trust (Award 101285)
    • Principle Award Recipient: ThomasWalker
  • National Institute of Allergy and Infectious Diseases (Award R01-AI116811)
    • Principle Award Recipient: NotApplicable
  • Wellcome Trust (Award 217303/Z/19/Z)
    • Principle Award Recipient: EvaHeinz
  • Biotechnology and Biological Sciences Research Council (Award BB/V011278/1)
    • Principle Award Recipient: EvaHeinz
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000805
2022-04-21
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/4/mgen000805.html?itemId=/content/journal/mgen/10.1099/mgen.0.000805&mimeType=html&fmt=ahah

References

  1. Quek S, Cerdeira C, Jeffries CL, Tomlinson S, Walker T et al. Wolbachia endosymbionts in two Anopheles species indicates independent acquisitions and lack of prophage elements. Figshare 2022 [View Article]
    [Google Scholar]
  2. Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 2008; 6:741–751 [View Article] [PubMed]
    [Google Scholar]
  3. Weinert LA, Araujo EV, Ahmed MZ, Welch JJ. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc R Soc B 2015; 282:20150249 [View Article]
    [Google Scholar]
  4. Sazama EJ, Bosch MJ, Shouldis CS, Ouellette SP, Wesner JS. Incidence of Wolbachia in aquatic insects. Ecol Evol 2017; 7:1165–1169
    [Google Scholar]
  5. Taylor MJ, Bordenstein SR, Slatko B. Microbe Profile: Wolbachia: a sex selector, a viral protector and a target to treat filarial nematodes. Microbiology 2018; 164:1345–1347 [View Article]
    [Google Scholar]
  6. Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ et al. Living in the endosymbiotic world of Wolbachia: a centennial review. Cell Host Microbe 2021; 29:879–893 [View Article] [PubMed]
    [Google Scholar]
  7. Baldo L, Werren JH. Revisiting Wolbachia supergroup typing based on WSP: spurious lineages and discordance with MLST. Curr Microbiol 2007; 55:81–87 [View Article] [PubMed]
    [Google Scholar]
  8. Baldo L, Dunning Hotopp JC, Jolley KA, Bordenstein SR, Biber SA et al. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 2006; 72:7098–7110 [View Article] [PubMed]
    [Google Scholar]
  9. Hosokawa T, Koga R, Kikuchi Y, Meng X-Y, Fukatsu T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci 2010; 107:769–774 [View Article]
    [Google Scholar]
  10. Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M et al. Evolutionary origin of insect-Wolbachia nutritional mutualism. Proc Natl Acad Sci USA 2014; 111:10257–10262 [View Article] [PubMed]
    [Google Scholar]
  11. LePage DP, Metcalf JA, Bordenstein SR, On J, Perlmutter JI et al. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 2017; 543:243–247 [View Article] [PubMed]
    [Google Scholar]
  12. Beckmann JF, Ronau JA, Hochstrasser M. A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nat Microbiol 2017; 2:17007 [View Article] [PubMed]
    [Google Scholar]
  13. Bordenstein SR, Wernegreen JJ. Bacteriophage flux in endosymbionts (Wolbachia): infection frequency, lateral transfer, and recombination rates. Mol Biol Evol 2004; 21:1981–1991 [View Article] [PubMed]
    [Google Scholar]
  14. Bordenstein SR, Brooks AW, Bordenstein SR et al. Evolutionary genetics of cytoplasmic incompatibility genes cifA and cifB prophage WO Wolbachia. Genome Biol Evol 2018; 10:434–451 [View Article] [PubMed]
    [Google Scholar]
  15. Martinez J, Klasson L, Welch JJ, Jiggins FM. Life and death of selfish genes: comparative genomics reveals the dynamic evolution of cytoplasmic incompatibility. Mol Biol Evol 2021; 38:2–15 [View Article] [PubMed]
    [Google Scholar]
  16. Beckmann JF, Bonneau M, Chen H, Hochstrasser M, Poinsot D et al. The toxin–antidote model of cytoplasmic incompatibility: genetics and evolutionary implications. Trends Genet 2019; 35:175–185 [View Article] [PubMed]
    [Google Scholar]
  17. Gillespie JJ, Driscoll TP, Verhoeve VI, Rahman MS, Macaluso KR et al. A tangled web: origins of reproductive parasitism. Genome Biol Evol 2018; 10:2292–2309 [View Article] [PubMed]
    [Google Scholar]
  18. Werren JH. Biology of Wolbachia. Annu Rev Entomol 1997; 42:587–609 [View Article] [PubMed]
    [Google Scholar]
  19. Serbus LR, Casper-Lindley C, Landmann F, Sullivan W. The genetics and cell biology of Wolbachia-host interactions. Annu Rev Genet 2008; 42:683–707 [View Article] [PubMed]
    [Google Scholar]
  20. McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M et al. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 2009; 323:141–144 [View Article] [PubMed]
    [Google Scholar]
  21. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 2011; 476:450–453 [View Article] [PubMed]
    [Google Scholar]
  22. Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 2011; 476:454–457 [View Article] [PubMed]
    [Google Scholar]
  23. Crawford JE, Clarke DW, Criswell V, Desnoyer M, Cornel D et al. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat Biotechnol 2020; 38:482–492 [View Article] [PubMed]
    [Google Scholar]
  24. Shropshire JD, On J, Layton EM, Zhou H, Bordenstein SR. One prophage WO gene rescues cytoplasmic incompatibility in Drosophila melanogaster. Proc Natl Acad Sci USA 2018; 115:4987–4991 [View Article] [PubMed]
    [Google Scholar]
  25. Shropshire JD, Bordenstein SR. Two-by-one model of cytoplasmic incompatibility: synthetic recapitulation by transgenic expression of cifA and cifB in Drosophila. PLOS Genet 2019; 15:e1008221 [View Article] [PubMed]
    [Google Scholar]
  26. McGraw EA, O’Neill SL. Beyond insecticides: new thinking on an ancient problem. Nat Rev Microbiol 2013; 11:181–193 [View Article] [PubMed]
    [Google Scholar]
  27. Bourtzis K, Dobson SL, Xi Z, Rasgon JL, Calvitti M et al. Harnessing mosquito-Wolbachia symbiosis for vector and disease control. Acta Trop 2014; 132:S150–S163 [View Article] [PubMed]
    [Google Scholar]
  28. Johnson KN. The impact of Wolbachia on virus infection in mosquitoes. Viruses 2015; 7:5705–5717 [View Article] [PubMed]
    [Google Scholar]
  29. Utarini A, Indriani C, Ahmad RA, Tantowijoyo W, Arguni E et al. Efficacy of Wolbachia-infected mosquito deployments for the control of dengue. N Engl J Med 2021; 384:2177–2186 [View Article] [PubMed]
    [Google Scholar]
  30. Indriani C, Tantowijoyo W, Rancès E, Andari B, Prabowo E et al. Reduced dengue incidence following deployments of Wolbachia-infected Aedes aegypti in Yogyakarta, Indonesia: a quasi-experimental trial using controlled interrupted time series analysis. Gates Open Res 2020; 4:50 [View Article] [PubMed]
    [Google Scholar]
  31. Hughes GL, Koga R, Xue P, Fukatsu T, Rasgon JL. Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae. PLoS Pathog 2011; 7:3–10 [View Article] [PubMed]
    [Google Scholar]
  32. Bian G, Joshi D, Dong Y, Lu P, Zhou G et al. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science 2013; 340:748–751 [View Article] [PubMed]
    [Google Scholar]
  33. Joshi D, Pan X, McFadden MJ, Bevins D, Liang X et al. The maternally inheritable Wolbachia wAlbB induces refractoriness to Plasmodium berghei in Anopheles stephensi. Front Microbiol 2017; 8:366 [View Article]
    [Google Scholar]
  34. Joshi D, McFadden MJ, Bevins D, Zhang F, Xi Z. Wolbachia strain wAlbB confers both fitness costs and benefit on Anopheles stephensi. Parasit Vectors 2014; 7:336 [View Article] [PubMed]
    [Google Scholar]
  35. Walker T, Moreira LA. Can Wolbachia be used to control malaria?. Mem Inst Oswaldo Cruz 2011; 106:212–217 [View Article] [PubMed]
    [Google Scholar]
  36. Chrostek E, Gerth M. Is Anopheles gambiae a natural host of Wolbachia?. mMBio 2019; 10:e00784-19
    [Google Scholar]
  37. Walker T, Quek S, Jeffries CL, Bandibabone J, Dhokiya V et al. Stable high-density and maternally inherited Wolbachia infections in Anopheles moucheti and Anopheles demeilloni mosquitoes. Curr Biol 2021; 31:2310–2320 [View Article] [PubMed]
    [Google Scholar]
  38. Baldini F, Segata N, Pompon J, Marcenac P, Shaw WR et al. Evidence of natural Wolbachia infections in field populations of Anopheles gambiae. Nat Commun 2014; 5:3985 [View Article] [PubMed]
    [Google Scholar]
  39. Gomes FM, Hixson BL, Tyner MDW, Ramirez JL, Canepa GE et al. Effect of naturally occurring Wolbachia in Anopheles gambiae s.l. mosquitoes from Mali on Plasmodium falciparum malaria transmission. Proc Natl Acad Sci USA 2017; 114:12566–12571
    [Google Scholar]
  40. Niang EHA, Bassene H, Makoundou P, Fenollar F, Weill M et al. First report of natural Wolbachia infection in wild Anopheles funestus population in Senegal. Malar J 2018; 17:408 [View Article] [PubMed]
    [Google Scholar]
  41. Ayala D, Akone-Ella O, Rahola N, Kengne P, Ngangue MF et al. Natural Wolbachia infections are common in the major malaria vectors in Central Africa. Evol Appl 2019; 12:1583–1594 [View Article] [PubMed]
    [Google Scholar]
  42. Wong ML, Liew JWK, Wong WK, Pramasivan S, Mohamed Hassan N et al. Natural Wolbachia infection in field-collected Anopheles and other mosquito species from Malaysia. Parasites Vectors 2020; 13:414 [View Article] [PubMed]
    [Google Scholar]
  43. Jeffries CL, Lawrence GG, Golovko G, Kristan M, Orsborne J et al. Novel Wolbachia strains in Anopheles malaria vectors from sub-Saharan Africa. Wellcome Open Res 2018; 3:113 [View Article] [PubMed]
    [Google Scholar]
  44. Tsai IJ, Otto TD, Berriman M. Improving draft assemblies by iterative mapping and assembly of short reads to eliminate gaps. Genome Biol 2010; 11:R41 [View Article]
    [Google Scholar]
  45. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol 2018; 14:e1005944 [View Article]
    [Google Scholar]
  46. Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004; 14:1394–1403 [View Article] [PubMed]
    [Google Scholar]
  47. Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L et al. Using tablet for visual exploration of second-generation sequencing data. Brief Bioinform 2013; 14:193–202 [View Article] [PubMed]
    [Google Scholar]
  48. Scholz M, Albanese D, Tuohy K, Donati C, Segata N et al. Large scale genome reconstructions illuminate Wolbachia evolution. Nat Commun 2020; 11:5235 [View Article] [PubMed]
    [Google Scholar]
  49. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31:3210–3212 [View Article] [PubMed]
    [Google Scholar]
  50. Li H. Wgsim for simulating sequence reads from a reference genome; 2011 https://github.com/lh3/wgsim
  51. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article] [PubMed]
    [Google Scholar]
  52. Seeman T. Snippy: fast bacterial variant calling from NGS reads; 2015 https://github.com/tseemann/snippy
  53. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [View Article] [PubMed]
    [Google Scholar]
  54. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  55. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 2015; 16:157 [View Article] [PubMed]
    [Google Scholar]
  56. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  57. Shen W, Le S, Li Y, Hu F, Zou Q. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 2016; 11:e0163962 [View Article] [PubMed]
    [Google Scholar]
  58. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  59. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 2017; 33:2938–2940 [View Article] [PubMed]
    [Google Scholar]
  60. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016; 32:2847–2849 [View Article] [PubMed]
    [Google Scholar]
  61. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  62. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A et al. The Pfam protein families database in 2019. Nucleic Acids Res 2019; 47:D427–D432 [View Article] [PubMed]
    [Google Scholar]
  63. Howard Hughes Medical Institute. HMMER: biosequence analysis using profile hidden Markov models; 2013 http://hmmer.org/
  64. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  65. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics 2011; 27:1009–1010 [View Article]
    [Google Scholar]
  66. Karp PD, Midford PE, Billington R, Kothari A, Krummenacker M et al. Pathway Tools version 23.0 update: software for pathway/genome informatics and systems biology. Brief Bioinform 2021; 22:109–126
    [Google Scholar]
  67. Caspi R, Billington R, Keseler IM, Kothari A, Krummenacker M et al. The MetaCyc database of metabolic pathways and enzymes – a 2019 update. Nucleic Acids Res 2020; 48:D445–D453 [View Article]
    [Google Scholar]
  68. Karp PD, Billington R, Caspi R, Fulcher CA, Latendresse M et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief Bioinform 2019; 20:1085–1093 [View Article]
    [Google Scholar]
  69. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 2017; 34:2115–2122 [View Article]
    [Google Scholar]
  70. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007; 35:W182–W185 [View Article] [PubMed]
    [Google Scholar]
  71. Wickham H. ggplot2: Elegant Graphics for Data Analysis ( https://ggplot2.tidyverse.org) New York: Springer-Verlag; 2016
    [Google Scholar]
  72. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007; 56:564–577 [View Article] [PubMed]
    [Google Scholar]
  73. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article] [PubMed]
    [Google Scholar]
  74. Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. Ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 2017; 8:28–36
    [Google Scholar]
  75. Löytynoja A. Phylogeny-aware alignment with PRANK. Methods Mol Biol 2014; 1079:155–170 [View Article]
    [Google Scholar]
  76. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21 [View Article]
    [Google Scholar]
  77. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012; 28:464–469 [View Article] [PubMed]
    [Google Scholar]
  78. Varani AM, Siguier P, Gourbeyre E, Charneau V, Chandler M. ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biol 2011; 12:R30 [View Article] [PubMed]
    [Google Scholar]
  79. Baião GC, Janice J, Galinou M, Klasson L. Comparative genomics reveals factors associated with phenotypic expression of Wolbachia. Genome Biol Evol 2021; 13:evab111 [View Article] [PubMed]
    [Google Scholar]
  80. Lefoulon E, Vaisman N, Frydman HM, Sun L, Voland L et al. Large enriched fragment targeted sequencing (LEFT-SEQ) applied to capture of Wolbachia genomes. Sci Rep 2019; 9:5939 [View Article] [PubMed]
    [Google Scholar]
  81. O’Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 1992; 89:2699–2702 [View Article] [PubMed]
    [Google Scholar]
  82. Werren JH, Zhang W, Guo LR. Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc Biol Sci 1995; 261:55–63 [View Article] [PubMed]
    [Google Scholar]
  83. Ishmael N, Hotopp JCD, Ioannidis P, Biber S, Sakamoto J et al. Extensive genomic diversity of closely related Wolbachia strains. Microbiology 2009; 155:2211–2222 [View Article] [PubMed]
    [Google Scholar]
  84. Rancès E, Voronin D, Tran-Van V, Mavingui P. Genetic and functional characterization of the type IV secretion system in Wolbachia. J Bacteriol 2008; 190:5020–5030 [View Article] [PubMed]
    [Google Scholar]
  85. Christie PJ, Whitaker N, González-Rivera C. Mechanism and structure of the bacterial type IV secretion systems. Biochim Biophys Acta 2014; 1843:1578–1591 [View Article] [PubMed]
    [Google Scholar]
  86. Carpinone EM, Li Z, Mills MK, Foltz C, Brannon ER et al. Identification of putative effectors of the type IV secretion system from the Wolbachia endosymbiont of Brugia malayi. PLoS One 2018; 13:e0204736 [View Article] [PubMed]
    [Google Scholar]
  87. Kent BN, Bordenstein SR. Phage WO of Wolbachia: lambda of the endosymbiont world. Trends Microbiol 2010; 18:173–181 [View Article] [PubMed]
    [Google Scholar]
  88. Gavotte L, Henri H, Stouthamer R, Charif D, Charlat S et al. A survey of the bacteriophage WO in the endosymbiotic bacteria Wolbachia. Mol Biol Evol 2007; 24:427–435 [View Article] [PubMed]
    [Google Scholar]
  89. Bordenstein SR, Bordenstein SR. Eukaryotic association module in phage WO genomes from Wolbachia. Nat Commun 2016; 7:13155 [View Article] [PubMed]
    [Google Scholar]
  90. Ellegaard KM, Klasson L, Näslund K, Bourtzis K, Andersson SGE. Comparative genomics of Wolbachia and the bacterial species concept. PLoS Genet 2013; 9:e1003381 [View Article] [PubMed]
    [Google Scholar]
  91. Kupritz J, Martin J, Fischer K, Curtis KC, Fauver JR et al. Isolation and characterization of a novel bacteriophage WO from Allonemobius socius crickets in Missouri. PLoS One 2021; 16:e0250051 [View Article] [PubMed]
    [Google Scholar]
  92. Chrostek E, Pelz-Stelinski K, Hurst GDD, Hughes GL. Horizontal transmission of intracellular insect symbionts via plants. Front Microbiol 2017; 8:2237 [View Article] [PubMed]
    [Google Scholar]
  93. Gill AC, Darby AC, Makepeace BL. Iron necessity: the secret of Wolbachia’s success?. PLoS Negl Trop Dis 2014; 8:e3224 [View Article]
    [Google Scholar]
  94. Sinha A, Li Z, Sun L, Carlow CKS, Cordaux R. Complete genome sequence of the Wolbachia wAlbB endosymbiont of Aedes albopictus. Genome Biol Evol 2019; 11:706–720 [View Article] [PubMed]
    [Google Scholar]
  95. Klasson L, Walker T, Sebaihia M, Sanders MJ, Quail MA et al. Genome evolution of Wolbachia strain wPip from the Culex pipiens group. Mol Biol Evol 2008; 25:1877–1887 [View Article] [PubMed]
    [Google Scholar]
  96. Miao YH, Xiao JH, Huang DW. Distribution and evolution of the bacteriophage WO and its antagonism with Wolbachia. Front Microbiol 2020; 11:595629 [View Article] [PubMed]
    [Google Scholar]
  97. Foster J, Ganatra M, Kamal I, Ware J, Makarova K et al. The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 2005; 3:e121 [View Article]
    [Google Scholar]
  98. Lefoulon E, Clark T, Guerrero R, Cañizales I, Cardenas-Callirgos JM et al. Diminutive, degraded but dissimilar: Wolbachia genomes from filarial nematodes do not conform to a single paradigm. Microb Genom 2020; 6:e000487 [View Article]
    [Google Scholar]
  99. Shropshire JD, Rosenberg R, Bordenstein SR. The impacts of cytoplasmic incompatibility factor (cifA and cifB) genetic variation on phenotypes. Genetics 2021; 217:iyaa007 [View Article]
    [Google Scholar]
  100. Meany MK, Conner WR, Richter SV, Bailey JA, Turelli M et al. Loss of cytoplasmic incompatibility and minimal fecundity effects explain relatively low Wolbachia frequencies in Drosophila mauritiana. Evolution 2019; 73:1278–1295 [View Article]
    [Google Scholar]
  101. Bourtzis K, Dobson SL, Braig HR, O’Neill SL. Rescuing Wolbachia have been overlooked. Nature 1998; 391:852–853 [View Article]
    [Google Scholar]
  102. Charlat S, Le Chat L, Merçot H. Characterization of non-cytoplasmic incompatibility inducing Wolbachia in two continental African populations of Drosophila simulans. Heredity 2003; 90:49–55 [View Article] [PubMed]
    [Google Scholar]
  103. Shropshire JD, Leigh B, Bordenstein SR. Symbiont-mediated cytoplasmic incompatibility: what have we learned in 50 years. Elife 2020; 9:e61989 [View Article] [PubMed]
    [Google Scholar]
  104. Cooper BS, Ginsberg PS, Turelli M, Matute DR. Wolbachia in the Drosophila yakuba complex: pervasive frequency variation and weak cytoplasmic incompatibility, but no apparent effect on reproductive isolation. Genetics 2017; 205:333–351 [View Article] [PubMed]
    [Google Scholar]
  105. Shoemaker DD, Katju V, Jaenike J. Wolbachia and the evolution of reproductive isolation between Drosophila recens and Drosophila subquinaria. Evolution 1999; 53:1157–1164 [View Article] [PubMed]
    [Google Scholar]
  106. Turelli M. Evolution of incompatibility-inducing microbes and their hosts. Evolution 1994; 48:1500–1513 [View Article] [PubMed]
    [Google Scholar]
  107. Hurst LD, McVean GT. Clade selection, reversible evolution and the persistence of selfish elements: the evolutionary dynamics of cytoplasmic incompatibility. Proc R Soc Lond B 1997; 263:97–104 [View Article]
    [Google Scholar]
  108. Koehncke A, Telschow A, Werren JH, Hammerstein P. Life and death of an influential passenger: Wolbachia and the evolution of CI-modifiers by their hosts. PLoS One 2009; 4:e4425 [View Article] [PubMed]
    [Google Scholar]
  109. Haygood R, Turelli M. Evolution of incompatibility-inducing microbes in subdivided host populations. Evolution 2009; 63:432–447 [View Article] [PubMed]
    [Google Scholar]
  110. Dedeine F, Boulétreau M, Vavre F. Wolbachia requirement for oogenesis: occurrence within the genus Asobara (Hymenoptera, Braconidae) and evidence for intraspecific variation in A. tabida. Heredity (Edinb) 2005; 95:394–400 [View Article] [PubMed]
    [Google Scholar]
  111. Kriesner P, Hoffmann AA, Lee SF, Turelli M, Weeks AR. Rapid sequential spread of two Wolbachia variants in Drosophila simulans. PLoS Pathog 2013; 9:e1003607 [View Article] [PubMed]
    [Google Scholar]
  112. Kriesner P, Hoffmann AA. Rapid spread of a Wolbachia infection that does not affect host reproduction in Drosophila simulans cage populations. Evolution 2018; 72:1475–1487 [View Article]
    [Google Scholar]
  113. Ant TH, Herd CS, Geoghegan V, Hoffmann AA, Sinkins SP et al. The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathog 2018; 14:e1006815 [View Article]
    [Google Scholar]
  114. Fast EM, Toomey ME, Panaram K, Desjardins D, Kolaczyk ED et al. Wolbachia enhance Drosophila stem cell proliferation and target the germline stem cell niche. Science 2011; 334:990–992 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000805
Loading
/content/journal/mgen/10.1099/mgen.0.000805
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error