1887

Abstract

Symbioses between bacteria and their insect hosts can range from loose associations through to obligate interdependence. While fundamental evolutionary insights have been gained from the in-depth study of obligate mutualisms, there is increasing interest in the evolutionary potential of flexible symbiotic associations between hosts and their gut microbiomes. Understanding relationships between microbes and hosts also offers the potential for exploitation for insect control. Here, we investigate the gut microbiome of a global agricultural pest, the Mediterranean fruit fly (). We used 16S rRNA profiling to compare the gut microbiomes of laboratory and wild strains raised on different diets and from flies collected from various natural plant hosts. The results showed that medfly guts harbour a simple microbiome that is primarily determined by the larval diet. However, regardless of the laboratory diet or natural plant host on which flies were raised, spp. dominated medfly microbiomes and were resistant to removal by antibiotic treatment. We sequenced the genome of the dominant putative spp. (‘Medkleb’) isolated from the gut of the Toliman wild-type strain. Genome-wide ANI analysis placed Medkleb within the group. Species level taxonomy for Medkleb was resolved using a mutli-locus phylogenetic approach - and molecular, sequence and phenotypic analyses all supported its identity as . Medkleb has a genome size (5825435 bp) which is 1.6 standard deviations smaller than the mean genome size of free-living spp. Medkleb also lacks some genes involved in environmental sensing. Moreover, the Medkleb genome contains at least two recently acquired unique genomic islands as well as genes that encode pectinolytic enzymes capable of degrading plant cell walls. This may be advantageous given that the medfly diet includes unripe fruits containing high proportions of pectin. The results suggest that the medfly harbours a commensal gut bacterium that may have developed a mutualistic association with its host and provide nutritional benefits.

Funding
This study was supported by the:
  • Biotechnology and Biological Sciences Research Council (Award BB/K000489/1)
    • Principle Award Recipient: TraceyChapman
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000801
2022-04-21
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/4/mgen000801.html?itemId=/content/journal/mgen/10.1099/mgen.0.000801&mimeType=html&fmt=ahah

References

  1. McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A 2013; 110:3229–3236 [View Article] [PubMed]
    [Google Scholar]
  2. McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 2011; 10:13–26 [View Article] [PubMed]
    [Google Scholar]
  3. Moran NA, Bennett GM. The tiniest tiny genomes. Annu Rev Microbiol 2014; 68:195–215 [View Article] [PubMed]
    [Google Scholar]
  4. Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 2008; 42:165–190 [View Article] [PubMed]
    [Google Scholar]
  5. Moran NA, Tran P, Gerardo NM. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl Environ Microbiol 2005; 71:8802–8810 [View Article] [PubMed]
    [Google Scholar]
  6. Bennett GM, Moran NA. Small, smaller, smallest: the origins and evolution of ancient dual symbioses in a Phloem-feeding insect. Genome Biol Evol 2013; 5:1675–1688 [View Article] [PubMed]
    [Google Scholar]
  7. Husnik F, Nikoh N, Koga R, Ross L, Duncan RP et al. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 2013; 153:1567–1578 [View Article] [PubMed]
    [Google Scholar]
  8. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H et al. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 2000; 407:81–86 [View Article]
    [Google Scholar]
  9. van Ham RCHJ, Kamerbeek J, Palacios C, Rausell C, Abascal F et al. Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci U S A 2003; 100:581–586 [View Article] [PubMed]
    [Google Scholar]
  10. Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL et al. Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol 2006; 4:e188 [View Article] [PubMed]
    [Google Scholar]
  11. Ochman H, Davalos LM. The nature and dynamics of bacterial genomes. Science 2006; 311:1730–1733 [View Article]
    [Google Scholar]
  12. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature 2000; 405:299–304 [View Article] [PubMed]
    [Google Scholar]
  13. Sabree ZL, Huang CY, Okusu A, Moran NA, Normark BB et al. The nutrient supplying capabilities of Uzinura, an endosymbiont of armoured scale insects. Environ Microbiol 2013; 15:1988–1999 [View Article] [PubMed]
    [Google Scholar]
  14. Sinotte VM, Freedman SN, Ugelvig LV, Seid MA. Camponotusfloridanus ants incur a trade-off between phenotypic development and pathogen susceptibility from their mutualistic endosymbiont Blochmannia. Insects 2018; 9:E58 [View Article] [PubMed]
    [Google Scholar]
  15. Storelli G, Strigini M, Grenier T, Bozonnet L, Schwarzer M et al. Drosophila perpetuates nutritional mutualism by promoting the fitness of its intestinal symbiont Lactobacillus plantarum. Cell Metab 2018; 27:362–377 [View Article] [PubMed]
    [Google Scholar]
  16. Sloan DB, Moran NA. Endosymbiotic bacteria as a source of carotenoids in whiteflies. Biol Lett 2012; 8:986–989 [View Article] [PubMed]
    [Google Scholar]
  17. Oliver KM, Russell JA, Moran NA, Hunter MS. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci U S A 2003; 100:1803–1807 [View Article] [PubMed]
    [Google Scholar]
  18. Anbutsu H, Moriyama M, Nikoh N, Hosokawa T, Futahashi R et al. Small genome symbiont underlies cuticle hardness in beetles. Proc Natl Acad Sci U S A 2017; 114:E8382–E8391 [View Article] [PubMed]
    [Google Scholar]
  19. Ballinger MJ, Perlman SJ. Generality of toxins in defensive symbiosis: Ribosome-inactivating proteins and defense against parasitic wasps in Drosophila. PLoS Pathog 2017; 13:e1006431 [View Article] [PubMed]
    [Google Scholar]
  20. de Souza DJ, Bézier A, Depoix D, Drezen J-M, Lenoir A et al. Blochmannia endosymbionts improve colony growth and immune defence in the ant Camponotus fellah. BMC Microbiol 2009; 9:29 [View Article] [PubMed]
    [Google Scholar]
  21. Heine D, Holmes NA, Worsley SF, Santos ACA, Innocent TM et al. Chemical warfare between leafcutter ant symbionts and a co-evolved pathogen. Nat Commun 2018; 9:2208 [View Article] [PubMed]
    [Google Scholar]
  22. Holmes NA, Innocent TM, Heine D, Bassam MA, Worsley SF et al. Genome analysis of two Pseudonocardia phylotypes associated with Acromyrmex leafcutter ants reveals their biosynthetic potential. Front Microbiol 2016; 7:2073 [View Article] [PubMed]
    [Google Scholar]
  23. Weiss B, Kaltenpoth M. Bacteriome-localized intracellular symbionts in pollen-feeding beetles of the genus Dasytes (Coleoptera, Dasytidae). Front Microbiol 2016; 7:1486 [View Article] [PubMed]
    [Google Scholar]
  24. Whitten M, Dyson P. Gene silencing in non-model insects: Overcoming hurdles using symbiotic bacteria for trauma-free sustainable delivery of RNA interference: Sustained RNA interference in insects mediated by symbiotic bacteria: Applications as a genetic tool and as a biocide. Bioessays 2017; 39: [View Article] [PubMed]
    [Google Scholar]
  25. Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S et al. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci U S A 1997; 94:3274–3278 [View Article] [PubMed]
    [Google Scholar]
  26. Leftwich PT, Bolton M, Chapman T. Evolutionary biology and genetic techniques for insect control. Evol Appl 2016; 9:212–230 [View Article] [PubMed]
    [Google Scholar]
  27. Whitten MMA, Facey PD, Del Sol R, Fernández-Martínez LT, Evans MC et al. Symbiont-mediated RNA interference in insects. Proc Biol Sci 2016; 283:20160042 [View Article] [PubMed]
    [Google Scholar]
  28. Behar A, Ben-Yosef M, Lauzon CR et al. Structure and function of the bacterial community associated with the mediterranean fruit fly. Insect Symbiosis 2009; 3:251–271 [View Article]
    [Google Scholar]
  29. Ben Ami E, Yuval B, Jurkevitch E. Manipulation of the microbiota of mass-reared Mediterranean fruit flies Ceratitis capitata (Diptera: Tephritidae) improves sterile male sexual performance. ISME J 2010; 4:28–37 [View Article] [PubMed]
    [Google Scholar]
  30. Gavriel S, Jurkevitch E, Gazit Y, Yuval B. Bacterially enriched diet improves sexual performance of sterile male Mediterranean fruit flies. Journal of Applied Entomology 2011; 135:564–573 [View Article]
    [Google Scholar]
  31. Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A et al. Bacterial communities of diverse Drosophila species: ecological context of a host-microbe model system. PLoS Genet 2011; 7:e1002272 [View Article] [PubMed]
    [Google Scholar]
  32. Deguenon JM, Travanty N, Zhu J, Carr A, Denning S et al. Exogenous and endogenous microbiomes of wild-caught Phormia regina (Diptera: Calliphoridae) flies from a suburban farm by 16S rRNA gene sequencing. Sci Rep 2019; 9:20365 [View Article] [PubMed]
    [Google Scholar]
  33. Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B et al. Microbiome interactions shape host fitness. Proc Natl Acad Sci U S A 2018; 115:E11951–E11960 [View Article] [PubMed]
    [Google Scholar]
  34. Woruba DN, Morrow JL, Reynolds OL, Chapman TA, Collins DP et al. Diet and irradiation effects on the bacterial community composition and structure in the gut of domesticated teneral and mature Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae). BMC Microbiol 2019; 19:281 [View Article] [PubMed]
    [Google Scholar]
  35. Douglas AE. The Drosophila model for microbiome research. Lab Anim (NY) 2018; 47:157–164 [View Article] [PubMed]
    [Google Scholar]
  36. Bosco-Drayon V, Poidevin M, Boneca IG, Narbonne-Reveau K, Royet J et al. Peptidoglycan sensing by the receptor PGRP-LE in the Drosophila gut induces immune responses to infectious bacteria and tolerance to microbiota. Cell Host Microbe 2012; 12:153–165 [View Article] [PubMed]
    [Google Scholar]
  37. Lhocine N, Ribeiro PS, Buchon N, Wepf A, Wilson R et al. PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling. Cell Host Microbe 2008; 4:147–158 [View Article]
    [Google Scholar]
  38. Lindberg BG, Tang X, Dantoft W, Gohel P, Seyedoleslami Esfahani S et al. Nubbin isoform antagonism governs Drosophila intestinal immune homeostasis. PLoS Pathog 2018; 14:e1006936 [View Article]
    [Google Scholar]
  39. Behar A, Jurkevitch E, Yuval B. Bringing back the fruit into fruit fly-bacteria interactions. Mol Ecol 2008; 17:1375–1386 [View Article] [PubMed]
    [Google Scholar]
  40. Ben-Yosef M, Pasternak Z, Jurkevitch E, Yuval B. Symbiotic bacteria enable olive flies (Bactrocera oleae) to exploit intractable sources of nitrogen. J Evol Biol 2014; 27:2695–2705 [View Article] [PubMed]
    [Google Scholar]
  41. Liu LJ, Martinez-Sañudo I, Mazzon L, Prabhakar CS, Girolami V et al. Bacterial communities associated with invasive populations of Bactrocera dorsalis (Diptera: Tephritidae) in China. Bull Entomol Res 2016; 106:718–728 [View Article]
    [Google Scholar]
  42. Aharon Y, Pasternak Z, Ben Yosef M, Behar A, Lauzon C et al. Phylogenetic, metabolic, and taxonomic diversities shape mediterranean fruit fly microbiotas during ontogeny. Appl Environ Microbiol 2013; 79:303–313 [View Article] [PubMed]
    [Google Scholar]
  43. Behar A, Yuval B, Jurkevitch E. Gut bacterial communities in the Mediterranean fruit fly (Ceratitis capitata) and their impact on host longevity. J Insect Physiol 2008; 54:1377–1383 [View Article] [PubMed]
    [Google Scholar]
  44. Lauzon CR, Mccombs SD, Potter SE, Peabody NC. Establishment and Vertical Passage of Enterobacter (Pantoea) Agglomerans and Klebsiella pneumoniae through all life stages of the mediterranean fruit fly (Diptera: Tephritidae). Ann Entomol Soc Am 2009; 102:85–95 [View Article]
    [Google Scholar]
  45. Leftwich PT, Nash WJ, Friend LA, Chapman T. Adaptation to divergent larval diets in the medfly, Ceratitis capitata. Evolution 2017; 71:289–303 [View Article] [PubMed]
    [Google Scholar]
  46. Leftwich PT, Clarke NVE, Hutchings MI, Chapman T. Reply to Obadia et al.: Effect of methyl paraben on host-microbiota interactions in Drosophila melanogaster. Proc Natl Acad Sci U S A 2018; 115:E4549–E4550 [View Article] [PubMed]
    [Google Scholar]
  47. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009; 75:7537–7541 [View Article]
    [Google Scholar]
  48. R Core Team R: A Language and Environment for Statistical Computing Vienna, Austria: R Foundation for Statistical Computing; 2019
    [Google Scholar]
  49. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 2013; 8:e61217 [View Article] [PubMed]
    [Google Scholar]
  50. Oksanen J, Kindt R, Legendre P, O’Hara B. The vegan package 2007 https://rdrr.io/cran/vegan/man/vegan-package.html
  51. Wickham H. Tidyverse: easily install and load the tidyverse 2017 https://tidyverse.tidyverse.org/
  52. Simmons JS. A culture medium for differentiating organisms of typhoid-colon aerogenes groups and for isolation of certain fungi: with colored plate. J Infect Dis 1926; 39:209–214 [View Article] [PubMed]
    [Google Scholar]
  53. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article] [PubMed]
    [Google Scholar]
  54. Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC bioinformatics 2012; 13:238 [View Article] [PubMed]
    [Google Scholar]
  55. Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs. Bioinformatics 2002; 18:452–464 [View Article] [PubMed]
    [Google Scholar]
  56. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM et al. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31:3210–3212 [View Article]
    [Google Scholar]
  57. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW et al. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  58. Arredondo-Alonso S, Rogers MRC, Braat JC, Verschuuren TD, Top J et al. mlplasmids: a user-friendly tool to predict plasmid- and chromosome-derived sequences for single species. Microb Genom 2018; 4: [View Article] [PubMed]
    [Google Scholar]
  59. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  60. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  61. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J et al. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 2009; 25:119–120 [View Article] [PubMed]
    [Google Scholar]
  62. Luo H, Gao F. DoriC 10.0: an updated database of replication origins in prokaryotic genomes including chromosomes and plasmids. Nucleic Acids Res 2019; 47:D74–D77 [View Article] [PubMed]
    [Google Scholar]
  63. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012; 28:464–469 [View Article] [PubMed]
    [Google Scholar]
  64. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010; 5:e11147 [View Article] [PubMed]
    [Google Scholar]
  65. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article] [PubMed]
    [Google Scholar]
  66. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  67. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article]
    [Google Scholar]
  68. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–6 [View Article] [PubMed]
    [Google Scholar]
  69. Peplies J, Kottmann R, Ludwig W, Glöckner FO. A standard operating procedure for phylogenetic inference (SOPPI) using (rRNA) marker genes. Syst Appl Microbiol 2008; 31:251–257 [View Article] [PubMed]
    [Google Scholar]
  70. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article]
    [Google Scholar]
  71. Yang Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 1994; 39:306–314 [View Article] [PubMed]
    [Google Scholar]
  72. Rambaut A, Drummond AJ. FigTree version 1.4.3; 2009
  73. Geer LY, Marchler-Bauer A, Geer RC, Han L, He J et al. The NCBI BioSystems database. Nucleic Acids Res 2010; 38:D492–6 [View Article] [PubMed]
    [Google Scholar]
  74. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 2005; 102:2567–2572 [View Article] [PubMed]
    [Google Scholar]
  75. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016 [View Article]
    [Google Scholar]
  76. Gascuel O. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 1997; 14:685–695 [View Article] [PubMed]
    [Google Scholar]
  77. Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL et al. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun 2021; 12:4188 [View Article] [PubMed]
    [Google Scholar]
  78. Kovtunovych G, Lytvynenko T, Negrutska V, Lar O, Brisse S et al. Identification of Klebsiella oxytoca using a specific PCR assay targeting the polygalacturonase pehX gene. Res Microbiol 2003; 154:587–592 [View Article] [PubMed]
    [Google Scholar]
  79. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 2011; 108 Suppl 1:4516–4522 [View Article] [PubMed]
    [Google Scholar]
  80. Lombard V, Bernard T, Rancurel C, Brumer H, Coutinho PM et al. A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem J 2010; 432:437–444 [View Article]
    [Google Scholar]
  81. Wegener CB. Induction of defence responses against Erwinia soft rot by an endogenous pectate lyase in potatoes. Physiological and Molecular Plant Pathology 2002; 60:91–100 [View Article]
    [Google Scholar]
  82. Xie F, Murray JD, Kim J, Heckmann AB, Edwards A et al. Legume pectate lyase required for root infection by rhizobia. Proc Natl Acad Sci U S A 2012; 109:633–638 [View Article] [PubMed]
    [Google Scholar]
  83. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959; 31:426–428 [View Article]
    [Google Scholar]
  84. Sohail M, Latif Z. Phylogenetic analysis of polygalacturonase-producing Bacillus and Pseudomonas isolated from plant waste material. Jundishapur J Microbiol 2016; 9:e28594 [View Article] [PubMed]
    [Google Scholar]
  85. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M et al. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44:D457–62 [View Article] [PubMed]
    [Google Scholar]
  86. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  87. Providenti MA, O’Brien JM, Ewing RJ, Paterson ES, Smith ML. The copy-number of plasmids and other genetic elements can be determined by SYBR-Green-based quantitative real-time PCR. J Microbiol Methods 2006; 65:476–487 [View Article] [PubMed]
    [Google Scholar]
  88. Nishida H. Comparative analyses of base compositions, DNA sizes, and dinucleotide frequency profiles in archaeal and bacterial chromosomes and plasmids. Int J Evol Biol 2012; 2012:342482 [View Article]
    [Google Scholar]
  89. Rocha EPC, Danchin A. Base composition bias might result from competition for metabolic resources. Trends Genet 2002; 18:291–294 [View Article] [PubMed]
    [Google Scholar]
  90. Rhoads A, Au KF. PacBio sequencing and its applications. Genom Proteom Bioinform 2015; 13:278–289 [View Article] [PubMed]
    [Google Scholar]
  91. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 2017; 35:725–731 [View Article] [PubMed]
    [Google Scholar]
  92. Kuo C-H, Moran NA, Ochman H. The consequences of genetic drift for bacterial genome complexity. Genome Res 2009; 19:1450–1454 [View Article] [PubMed]
    [Google Scholar]
  93. Reva ON, Tümmler B. Global features of sequences of bacterial chromosomes, plasmids and phages revealed by analysis of oligonucleotide usage patterns. BMC Bioinformatics 2004; 5:90 [View Article] [PubMed]
    [Google Scholar]
  94. Lobry JR. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 1996; 13:660–665 [View Article]
    [Google Scholar]
  95. Lawrence JG, Ochman H. Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 1997; 44:383–397 [View Article] [PubMed]
    [Google Scholar]
  96. Wixon J. Featured organism: reductive evolution in bacteria: Buchnera sp., Rickettsia prowazekii and Mycobacterium leprae. Comp Funct Genomics 2001; 2:44–48 [View Article] [PubMed]
    [Google Scholar]
  97. de Graaf FK, Spanjaerdt Speckman EA, Stouthamer AH. Mode of action of a bacteriocin produced by Enterobacter cloacae DF13. Antonie Van Leeuwenhoek 1969; 35:287–306 [View Article] [PubMed]
    [Google Scholar]
  98. Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R et al. Colicin biology. Microbiol Mol Biol Rev 2007; 71:158–229 [View Article] [PubMed]
    [Google Scholar]
  99. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001; 305:567–580 [View Article] [PubMed]
    [Google Scholar]
  100. Nelson WC, Howard MT, Sherman JA, Matson SW. The traY gene product and integration host factor stimulate Escherichia coli DNA Helicase I-catalyzed Nicking at the F Plasmid oriT. Journal of Biological Chemistry 1995; 270:28374–28380 [View Article] [PubMed]
    [Google Scholar]
  101. Bire S, Rouleux-Bonnin F. Transposable elements as tools for reshaping the genome: it is a huge world after all!. Methods Mol Biol 2012; 859:1–28 [View Article] [PubMed]
    [Google Scholar]
  102. Dobrindt U, Hochhut B, Hentschel U, Hacker J. Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2004; 2:414–424 [View Article] [PubMed]
    [Google Scholar]
  103. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T et al. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110 (supplement). DNA Res 2002; 9:225–256 [View Article] [PubMed]
    [Google Scholar]
  104. Moreno-Vivián C, Cabello P, Martínez-Luque M, Blasco R, Castillo F et al. Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 1999; 181:6573–6584 [View Article] [PubMed]
    [Google Scholar]
  105. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  106. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  107. Saha R, Farrance CE, Verghese B, Hong S, Donofrio RS et al. Klebsiella michiganensis sp. nov., a new bacterium isolated from a tooth brush holder. Curr Microbiol 2013; 66:72–78 [View Article] [PubMed]
    [Google Scholar]
  108. Kitani S, Miyamoto KT, Takamatsu S, Herawati E, Iguchi H et al. Avenolide, a Streptomyces hormone controlling antibiotic production in Streptomyces avermitilis. Proc Natl Acad Sci U S A 2011; 108:16410–16415 [View Article] [PubMed]
    [Google Scholar]
  109. Takano E. Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 2006; 9:287–294 [View Article] [PubMed]
    [Google Scholar]
  110. Battista N, Bari M, Bisogno T. N-Acyl amino acids: metabolism, molecular targets, and role in biological processes. Biomolecules 2019; 9:E822 [View Article] [PubMed]
    [Google Scholar]
  111. Craig JW, Cherry MA, Brady SF. Long-chain N-acyl amino acid synthases are linked to the putative PEP-CTERM/exosortase protein-sorting system in Gram-negative bacteria. J Bacteriol 2011; 193:5707–5715 [View Article] [PubMed]
    [Google Scholar]
  112. Behar A, Yuval B, Jurkevitch E. Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Mol Ecol 2005; 14:2637–2643 [View Article] [PubMed]
    [Google Scholar]
  113. Malacrinò A, Campolo O, Medina RF, Palmeri V. Instar- and host-associated differentiation of bacterial communities in the Mediterranean fruit fly Ceratitis capitata. PLoS One 2018; 13:e0194131 [View Article] [PubMed]
    [Google Scholar]
  114. Nikolouli K, Augustinos AA, Stathopoulou P, Asimakis E, Mintzas A et al. Genetic structure and symbiotic profile of worldwide natural populations of the Mediterranean fruit fly, Ceratitis capitata. BMC Genet 2020; 21:128 [View Article]
    [Google Scholar]
  115. Stackebrandt E. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  116. Leftwich PT. Male reproductive success and population control in the Mediterranean fruit fly, Ceratitis capitata University of East Anglia; 2012
    [Google Scholar]
  117. Leftwich PT, Edgington MP, Chapman T. Transmission efficiency drives host-microbe associations. Proc Biol Sci 2020; 287:20200820 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000801
Loading
/content/journal/mgen/10.1099/mgen.0.000801
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error