1887

Abstract

species complex (RSSC) strains are bacteria that colonize plant xylem tissue and cause vascular wilt diseases. However, individual strains vary in host range, optimal disease temperatures and physiological traits. To increase our understanding of the evolution, diversity and biology of the RSSC, we performed a meta-analysis of 100 representative RSSC genomes. These 100 RSSC genomes contain 4940 genes on average, and a pangenome analysis found that there are 3262 genes in the core genome (~60 % of the mean RSSC genome) with 13 128 genes in the extensive flexible genome. A core genome phylogenetic tree and a whole-genome similarity matrix aligned with the previously named species (, , ) and phylotypes (I–IV). These analyses also highlighted a third unrecognized sub-clade of phylotype II. Additionally, we identified differences between phylotypes with respect to gene content and recombination rate, and we delineated population clusters based on the extent of horizontal gene transfer. Multiple analyses indicate that phylotype II is the most diverse phylotype, and it may thus represent the ancestral group of the RSSC. We also used our genome-based framework to test whether the RSSC sequence variant (sequevar) taxonomy is a robust method to define within-species relationships of strains. The sequevar taxonomy is based on alignments of a single conserved gene (). Although sequevars in phylotype II describe monophyletic groups, the sequevar system breaks down in the highly recombinogenic phylotype I, which highlights the need for an improved, cost-effective method for genotyping strains in phylotype I. Finally, we enabled quick and precise genome-based identification of newly sequenced RSSC strains by assigning Life Identification Numbers (LINs) to the 100 strains and by circumscribing the RSSC and its sub-groups in the LINbase Web service.

Funding
This study was supported by the:
  • Directorate for Biological Sciences (Award DBI-2018522)
    • Principle Award Recipient: LenwoodS. Heath
  • Directorate for Biological Sciences (Award DBI-2018522)
    • Principle Award Recipient: BorisA. Vinatzer
  • Animal and Plant Health Inspection Service (Award AP19PPQS&T00C083)
    • Principle Award Recipient: LenwoodS. Heath
  • Animal and Plant Health Inspection Service (Award AP19PPQS&T00C083)
    • Principle Award Recipient: CaitilynAllen
  • Animal and Plant Health Inspection Service (Award AP19PPQS&T00C083)
    • Principle Award Recipient: BorisA. Vinatzer
  • National Institute of Food and Agriculture (Award 2022-67013-36272)
    • Principle Award Recipient: TiffanyM Lowe-Power
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000791
2022-03-17
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/3/mgen000791.html?itemId=/content/journal/mgen/10.1099/mgen.0.000791&mimeType=html&fmt=ahah

References

  1. Sharma P, Flores MA, Mazloom R, Allen C, Health L et al. Meta analysis of the Ralstonia solanacearum species complex (RSSC) based on comparative evolutionary genomics and reverse ecology. Figshare 2022 [View Article]
    [Google Scholar]
  2. Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 2006; 361:1929–1940 [View Article] [PubMed]
    [Google Scholar]
  3. Lowe-Power TM, Khokhani D, Allen C. How Ralstonia solanacearum exploits and thrives in the flowing plant xylem environment. Trends Microbiol 2018; 26:929–942 [View Article] [PubMed]
    [Google Scholar]
  4. Ailloud F, Lowe T, Cellier G, Roche D, Allen C et al. Comparative genomic analysis of Ralstonia solanacearum reveals candidate genes for host specificity. BMC Genomics 2015; 16:270 [View Article] [PubMed]
    [Google Scholar]
  5. Remenant B, Coupat-Goutaland B, Guidot A, Cellier G, Wicker E et al. Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence. BMC Genomics 2010; 11:379 [View Article] [PubMed]
    [Google Scholar]
  6. Prior P, Ailloud F, Dalsing BL, Remenant B, Sanchez B et al. Genomic and proteomic evidence supporting the division of the plant pathogen Ralstonia solanacearum into three species. BMC Genomics 2016; 17:90 [View Article] [PubMed]
    [Google Scholar]
  7. Poussier S, Prior P, Luisetti J, Hayward C, Fegan M. Partial sequencing of the hrpB and endoglucanase genes confirms and expands the known diversity within the Ralstonia solanacearum species complex. Syst Appl Microbiol 2000; 23:479–486 [View Article] [PubMed]
    [Google Scholar]
  8. Safni I, Cleenwerck I, De Vos P, Fegan M, Sly L et al. Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. Int J Syst Evol Microbiol 2014; 64:3087–3103 [View Article]
    [Google Scholar]
  9. Rosselló-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev 2001; 25:39–67 [View Article] [PubMed]
    [Google Scholar]
  10. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kämpfer P et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002; 52:1043–1047 [View Article] [PubMed]
    [Google Scholar]
  11. Hull DL. The ideal species concept - and why we can’t get it. In Claridge MF, Dawah HA, Wilson MR. eds Species: The Units of Biodiversity London: Chapman and Hall; pp 357–380
    [Google Scholar]
  12. Stott CM, Bobay L-M. Impact of homologous recombination on core genome phylogenies. BMC Genomics 2020; 21:829 [View Article] [PubMed]
    [Google Scholar]
  13. Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol 2020; 38:1079–1086 [View Article] [PubMed]
    [Google Scholar]
  14. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  15. Schoch C. NCBI Taxonomy. National Center for Biotechnology Information (US); 2020 https://www.ncbi.nlm.nih.gov/books/NBK53758/ [PubMed]
  16. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res 2014; 42:D643–8 [View Article] [PubMed]
    [Google Scholar]
  17. Fegan M, Prior P. How complex is the Ralstonia solanacearum species complex. Bacterial wilt disease and the Ralstonia solanacearum species complex 2005; 1:449–461
    [Google Scholar]
  18. Andersson L. The driving force: species concepts and ecology. TAXON 2019; 39:375–382 [View Article]
    [Google Scholar]
  19. Vos M. A species concept for bacteria based on adaptive divergence. Trends Microbiol 2011; 19:1–7 [View Article] [PubMed]
    [Google Scholar]
  20. Arevalo P, VanInsberghe D, Polz MF. A reverse ecology framework for bacteria and archaea. In Polz MF, Rajora OP. eds Population Genomics: Microorganisms Cham: Springer International Publishing; pp 77–96
    [Google Scholar]
  21. Arevalo P, VanInsberghe D, Elsherbini J, Gore J, Polz MF. A reverse ecology approach based on a biological definition of microbial populations. Cell 2019; 178:820–834 [View Article] [PubMed]
    [Google Scholar]
  22. Staley JT. The bacterial species dilemma and the genomic-phylogenetic species concept. Philos Trans R Soc Lond B Biol Sci 2006; 361:1899–1909 [View Article] [PubMed]
    [Google Scholar]
  23. Bobay L-M, Ochman H. Biological species are universal across Life’s domains. Genome Biol Evol 2017 [View Article] [PubMed]
    [Google Scholar]
  24. Dillon MM, Thakur S, Almeida RND, Wang PW, Weir BS et al. Recombination of ecologically and evolutionarily significant loci maintains genetic cohesion in the Pseudomonas syringae species complex. Genome Biol 2019; 20:3 [View Article] [PubMed]
    [Google Scholar]
  25. Young JM, Takikawa Y, Gardan L, Stead DE. Changing concepts in the taxonomy of plant pathogenic bacteria. Annu Rev Phytopathol 1992; 30:67–105 [View Article]
    [Google Scholar]
  26. Arnold DL, Lovell HC, Jackson RW, Mansfield JW. Pseudomonas syringae pv. phaseolicola: from “has bean” to supermodel. Mol Plant Pathol 2011; 12:617–627 [View Article] [PubMed]
    [Google Scholar]
  27. Cook D. Genetic diversity of Pseudomonas solanacearum: detection of restriction fragment length polymorphisms with DNA probes that specify virulence and the hypersensitive response. MPMI 1989; 2:113 [View Article]
    [Google Scholar]
  28. Albuquerque GMR, Santos LA, Felix KCS, Rollemberg CL, Silva AMF et al. Moko disease-causing strains of Ralstonia solanacearum from Brazil extend known diversity in paraphyletic phylotype II. Phytopathology 2014; 104:1175–1182 [View Article] [PubMed]
    [Google Scholar]
  29. Xu J, Pan ZC, Prior P, Xu JS, Zhang Z et al. Genetic diversity of Ralstonia solanacearum strains from China. Eur J Plant Pathol 2009; 125:641–653 [View Article]
    [Google Scholar]
  30. Hayward AC. Characteristics of Pseudomonas solanacearum. J Appl Bacteriol 1964; 27:265–277
    [Google Scholar]
  31. Vinatzer BA, Weisberg AJ, Monteil CL, Elmarakeby HA, Sheppard SK et al. A proposal for a genome similarity-based taxonomy for plant-pathogenic bacteria that is sufficiently precise to reflect phylogeny, host range, and outbreak affiliation applied to Pseudomonas syringae sensu lato as a proof of concept. Phytopathology 2017; 107:18–28 [View Article] [PubMed]
    [Google Scholar]
  32. Tian L, Huang C, Mazloom R, Heath LS, Vinatzer BA. LINbase: a web server for genome-based identification of prokaryotes as members of crowdsourced taxa. Nucleic Acids Res 2020; 48:W529–W537 [View Article] [PubMed]
    [Google Scholar]
  33. Vallenet D, Engelen S, Mornico D, Cruveiller S, Fleury L et al. MicroScope: a platform for microbial genome annotation and comparative genomics. Database (Oxford) 2009; 2009:bap021 [View Article] [PubMed]
    [Google Scholar]
  34. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  35. Tian L, Mazloom R, Heath LS, Vinatzer BA. LINflow: a computational pipeline that combines an alignment-free with an alignment-based method to accelerate generation of similarity matrices for prokaryotic genomes. PeerJ 2021; 9:e10906 [View Article] [PubMed]
    [Google Scholar]
  36. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  37. Bayliss SC, Thorpe HA, Coyle NM, Sheppard SK, Feil EJ. PIRATE: A fast and scalable pangenomics toolbox for clustering diverged orthologues in bacteria. Gigascience 2019; 8:giz119 [View Article] [PubMed]
    [Google Scholar]
  38. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  39. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  40. Yu G, Smith DK, Zhu H, Guan Y, Lam T-Y. GGTREE: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 2017; 8:28–36
    [Google Scholar]
  41. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 2017; 33:2938–2940 [View Article] [PubMed]
    [Google Scholar]
  42. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24 [View Article]
    [Google Scholar]
  43. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA et al. n.d Gplots: various R programming tools for plotting data. R package version 2.17. 0. computer software.
  44. Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol 2015; 11:e1004041 [View Article] [PubMed]
    [Google Scholar]
  45. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V et al. Twelve years of SAMtools and BCFtools. Gigascience 2021; 10:giab008 [View Article] [PubMed]
    [Google Scholar]
  46. Kwong J. cfml-maskrc: Masks recombinant regions in an alignment based on ClonalFrameML output; 2021 https://github.com/kwongj/cfml-maskrc
  47. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019; 35:4453–4455 [View Article] [PubMed]
    [Google Scholar]
  48. Seemann T. snippy: Rapid haploid variant calling and core genome alignment; 2021 https://github.com/tseemann/snippy
  49. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [View Article] [PubMed]
    [Google Scholar]
  50. Wicker E, N’guessan C, Le Roux-Nio AC, Deberdt P, Sujeeun L et al. A reference database of Ralstonia solanacearum egl-mutS haplotypes for global epidemiological surveillance of bacterial wilts. https://agritrop.cirad.fr/582579/1/Wicker_BD%20egl-mutS_FINAL.pdf
  51. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article] [PubMed]
    [Google Scholar]
  52. Bocsanczy AM, Huguet-Tapia JC, Norman DJ. Comparative genomics of Ralstonia solanacearum identifies candidate genes associated with cool virulence. Front Plant Sci 2017; 8:1565 [View Article] [PubMed]
    [Google Scholar]
  53. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome.”. Proc Natl Acad Sci U S A 2005; 102:13950–13955 [View Article] [PubMed]
    [Google Scholar]
  54. Albuquerque GMR, Souza EB, Silva AMF, Lopes CA, Boiteux LS et al. Genome sequence of Ralstonia pseudosolanacearum strains with compatible and incompatible interactions with the major tomato resistance source Hawaii 7996. Genome Announc 2017; 5:e00982-17 [View Article] [PubMed]
    [Google Scholar]
  55. Wicker E, Lefeuvre P, de Cambiaire J-C, Lemaire C, Poussier S et al. Contrasting recombination patterns and demographic histories of the plant pathogen Ralstonia solanacearum inferred from MLSA. ISME J 2012; 6:961–974 [View Article] [PubMed]
    [Google Scholar]
  56. Safni I, Subandiyah S, Fegan M. Ecology, epidemiology and disease management of Ralstonia syzygii in Indonesia. Front Microbiol 2018; 9:419 [View Article] [PubMed]
    [Google Scholar]
  57. Coupat B, Chaumeille-Dole F, Fall S, Prior P, Simonet P et al. Natural transformation in the Ralstonia solanacearum species complex: number and size of DNA that can be transferred. FEMS Microbiol Ecol 2008; 66:14–24 [View Article] [PubMed]
    [Google Scholar]
  58. Guinard J, Latreille A, Guérin F, Poussier S, Wicker E. New Multilocus Variable-Number Tandem-Repeat Analysis (MLVA) scheme for fine-scale monitoring and microevolution-related study of Ralstonia pseudosolanacearum phylotype I populations. Appl Environ Microbiol 2017; 83:e03095-16 [View Article] [PubMed]
    [Google Scholar]
  59. Guidot A, Coupat B, Fall S, Prior P, Bertolla F. Horizontal gene transfer between Ralstonia solanacearum strains detected by comparative genomic hybridization on microarrays. ISME J 2009; 3:549–562 [View Article] [PubMed]
    [Google Scholar]
  60. Prokchorchik M, Pandey A, Moon H, Kim W, Jeon H et al. Host adaptation and microbial competition drive Ralstonia solanacearum phylotype I evolution in the Republic of Korea. Microb Genom 2020; 6: [View Article] [PubMed]
    [Google Scholar]
  61. Sabbagh CRR, Carrere S, Lonjon F, Vailleau F, Macho AP et al. Pangenomic type III effector database of the plant pathogenic Ralstonia spp. PeerJ 2019; 7:e7346 [View Article] [PubMed]
    [Google Scholar]
  62. Gluck-Thaler E, Cerutti A, Perez-Quintero AL, Butchacas J, Roman-Reyna V et al. Repeated gain and loss of a single gene modulates the evolution of vascular plant pathogen lifestyles. Sci Adv 2020; 6:eabc4516 [View Article] [PubMed]
    [Google Scholar]
  63. Bernal P, Llamas MA, Filloux A. Type VI secretion systems in plant-associated bacteria. Environ Microbiol 2018; 20:1–15 [View Article] [PubMed]
    [Google Scholar]
  64. Spraker JE, Sanchez LM, Lowe TM, Dorrestein PC, Keller NP. Ralstonia solanacearum lipopeptide induces chlamydospore development in fungi and facilitates bacterial entry into fungal tissues. ISME J 2016; 10:2317–2330 [View Article] [PubMed]
    [Google Scholar]
  65. Lowe-Power T, Avalos J, Munoz MC, Chipman K. A meta-analysis of the known global distribution and host range of the ralstonia species complex. bioRxiv 2020
    [Google Scholar]
  66. Etminani F, Yousefvand M, Harighi B. Phylogenetic analysis and molecular signatures specific to the Ralstonia solanacearum species complex. Eur J Plant Pathol 2020; 158:261–279 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000791
Loading
/content/journal/mgen/10.1099/mgen.0.000791
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error