1887

Abstract

is a Gram-negative, rod-shaped bacterium of the family causing pig pleuropneumonia associated with great economic losses worldwide. Nineteen serotypes with distinctive lipopolysaccharide (LPS) and capsular (CPS) compositions have been described so far, yet complete circular genomes are publicly available only for the reference strains of serotypes 1, 4 and 5b, and for field strains of serotypes 1, 3, 7 and 8. We aimed to complete this picture by sequencing the reference strains of 17 different serotypes with the MinION sequencer (Oxford Nanopore Technologies, ONT) and on an Illumina HiSeq (Illumina) platform. We also included two field isolates of serotypes 2 and 3 that were PacBio- and MinION-sequenced, respectively. Genome assemblies were performed following two different strategies, i.e. PacBio- or ONT-only assemblies polished with Illumina reads or a hybrid assembly by directly combining ONT and Illumina reads. Both methods proved successful in obtaining accurate circular genomes with comparable qualities. -based genome comparisons and core-genome phylogeny based on core genes, SNP typing and multi-locus sequence typing (cgMLST) of the 26 circular genomes indicated well-conserved genomes across the 18 different serotypes, differing mainly in phage insertions, and CPS, LPS and RTX-toxin clusters, which, consistently, encode serotype-specific antigens. We also identified small antibiotic resistance plasmids, and complete subtype I-F and subtype II-C CRISPR-Cas systems. Of note, highly similar clusters encoding all those serotype-specific traits were also found in other pathogenic and commensal species. Taken together with the presence of transposable elements surrounding these loci, we speculate a dynamic intra- and interspecies exchange of such virulence-related factors by horizontal gene transfer. In conclusion, our comprehensive genomics analysis provides useful information for diagnostic test and vaccine development, but also for whole-genome-based epidemiological studies, as well as for the surveillance of the evolution of antibiotic resistance and virulence genes in .

Keyword(s): CPS , LPS , ONT , porcine pleuropneumonia , serotype and WGS
Funding
This study was supported by the:
  • Kommission für Technologie und Innovation (Award 25291.2 PFLS-LS)
    • Principle Award Recipient: VincentPerreten
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000776
2022-02-23
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/2/mgen000776.html?itemId=/content/journal/mgen/10.1099/mgen.0.000776&mimeType=html&fmt=ahah

References

  1. Sassu EL, Bossé JT, Tobias TJ, Gottschalk M, Langford PR et al. Update on Actinobacillus pleuropneumoniae-knowledge, gaps and challenges. Transbound Emerg Dis 2018; 65 Suppl 1:72–90 [View Article] [PubMed]
    [Google Scholar]
  2. Blackall PJ, Klaasen HLBM, van den Bosch H, Kuhnert P, Frey J. Proposal of a new serovar of Actinobacillus pleuropneumoniae: serovar 15. Vet Microbiol 2002; 84:47–52 [View Article] [PubMed]
    [Google Scholar]
  3. Bossé JT, Li Y, Sárközi R, Fodor L, Lacouture S et al. Proposal of serovars 17 and 18 of Actinobacillus pleuropneumoniae based on serological and genotypic analysis. Vet Microbiol 2018; 217:1–6 [View Article] [PubMed]
    [Google Scholar]
  4. Bossé JT, Li Y, Sárközi R, Gottschalk M, Angen Ø et al. A unique capsule locus in the newly designated Actinobacillus pleuropneumoniae serovar 16 and development of a diagnostic PCR assay. J Clin Microbiol 2017; 55:902–907 [View Article] [PubMed]
    [Google Scholar]
  5. Gottschalk M. The challenge of detecting herds sub-clinically infected with Actinobacillus pleuropneumoniae. Vet J 2015; 206:30–38 [View Article] [PubMed]
    [Google Scholar]
  6. Stringer OW, Bossé JT, Lacouture S, Gottschalk M, Fodor L et al. Proposal of Actinobacillus pleuropneumoniae serovar 19, and reformulation of previous multiplex PCRs for capsule-specific typing of all known serovars. Vet Microbiol 2021; 255:109021 [View Article] [PubMed]
    [Google Scholar]
  7. Dubreuil JD, Jacques M, Mittal KR, Gottschalk M. Actinobacillus pleuropneumoniae surface polysaccharides: their role in diagnosis and immunogenicity. Anim Health Res Rev 2000; 1:73–93 [View Article] [PubMed]
    [Google Scholar]
  8. Schuwerk L, Hoeltig D, Waldmann KH, Valentin-Weigand P, Rohde J. Sero- and apx-typing of German Actinobacillus pleuropneumoniae field isolates from 2010 to 2019 reveals a predominance of serovar 2 with regular apx-profile. Vet Res 2021; 52:10 [View Article] [PubMed]
    [Google Scholar]
  9. O’Neill C, Jones SCP, Bossé JT, Watson CM, Williamson SM et al. Prevalence of Actinobacillus pleuropneumoniae serovars in England and Wales. Vet Rec 2010; 167:661–662 [View Article] [PubMed]
    [Google Scholar]
  10. Klitgaard K, Friis C, Angen O, Boye M. Comparative profiling of the transcriptional response to iron restriction in six serotypes of Actinobacillus pleuropneumoniae with different virulence potential. BMC Genomics 2010; 11:698 [View Article] [PubMed]
    [Google Scholar]
  11. Fussing V. Genomic relationships of Actinobacillus pleuropneumoniae serotype 2 strains evaluated by ribotyping, sequence analysis of ribosomal intergenic regions, and pulsed-field gel electrophoresis. Lett Appl Microbiol 1998; 27:211–215 [View Article] [PubMed]
    [Google Scholar]
  12. Dom P, Haesebrouck F. Comparative virulence of NAD-dependent and NAD-independent Actinobacillus pleuropneumoniae strains. Zentralbl Veterinarmed B 1992; 39:303–306 [View Article] [PubMed]
    [Google Scholar]
  13. Jacobsen MJ, Nielsen JP, Nielsen R. Comparison of virulence of different Actinobacillus pleuropneumoniae serotypes and biotypes using an aerosol infection model. Vet Microbiol 1996; 49:159–168 [View Article] [PubMed]
    [Google Scholar]
  14. Chung JW, Ng-Thow-Hing C, Budman LI, Gibbs BF, Nash JHE et al. Outer membrane proteome of Actinobacillus pleuropneumoniae: LC-MS/MS analyses validate in silico predictions. Proteomics 2007; 7:1854–1865 [View Article] [PubMed]
    [Google Scholar]
  15. Frey J. Virulence in Actinobacillus pleuropneumoniae and RTX toxins. Trends Microbiol 1995; 3:257–261 [View Article] [PubMed]
    [Google Scholar]
  16. Jacques M. Surface polysaccharides and iron-uptake systems of Actinobacillus pleuropneumoniae. Can J Vet Res 2004; 68:81–85 [PubMed]
    [Google Scholar]
  17. Perry MB, MacLean LL, Vinogradov E. Structural characterization of the antigenic capsular polysaccharide and lipopolysaccharide O-chain produced by Actinobacillus pleuropneumoniae serotype 15. Biochem Cell Biol 2005; 83:61–69 [View Article] [PubMed]
    [Google Scholar]
  18. Xu Z, Chen X, Li L, Li T, Wang S et al. Comparative genomic characterization of Actinobacillus pleuropneumoniae. J Bacteriol 2010; 192:5625–5636 [View Article] [PubMed]
    [Google Scholar]
  19. Bossé JT, Li Y, Fernandez Crespo R, Lacouture S, Gottschalk M et al. Comparative sequence analysis of the capsular polysaccharide loci of Actinobacillus pleuropneumoniae serovars 1-18, and development of two multiplex PCRs for comprehensive capsule typing. Vet Microbiol 2018; 220:83–89 [View Article] [PubMed]
    [Google Scholar]
  20. Bossé JT, Li Y, Angen Ø, Weinert LA, Chaudhuri RR et al. Multiplex PCR assay for unequivocal differentiation of Actinobacillus pleuropneumoniae serovars 1 to 3, 5 to 8, 10, and 12. J Clin Microbiol 2014; 52:2380–2385 [View Article] [PubMed]
    [Google Scholar]
  21. Frey J, Beck M, van den Bosch JF, Segers RP, Nicolet J. Development of an efficient PCR method for toxin typing of Actinobacillus pleuropneumoniae strains. Mol Cell Probes 1995; 9:277–282 [View Article] [PubMed]
    [Google Scholar]
  22. Ramjeet M, Deslandes V, Gouré J, Jacques M. Actinobacillus pleuropneumoniae vaccines: from bacterins to new insights into vaccination strategies. Anim Health Res Rev 2008; 9:25–45 [View Article] [PubMed]
    [Google Scholar]
  23. Loera-Muro A, Angulo C. New trends in innovative vaccine development against Actinobacillus pleuropneumoniae. Vet Microbiol 2018; 217:66–75 [View Article] [PubMed]
    [Google Scholar]
  24. Przybyl S, Jachymek W. Antigens of Actinobacillus pleuropneumoniae and their use in the design of vaccines, especially glycoconjugates. Postepy Hig Med Dosw 2018; 72:471–480 [View Article]
    [Google Scholar]
  25. Besser J, Carleton HA, Gerner-Smidt P, Lindsey RL, Trees E. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clin Microbiol Infect 2018; 24:335–341 [View Article] [PubMed]
    [Google Scholar]
  26. van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C. The third revolution in sequencing technology. Trends Genet 2018; 34:666–681 [View Article] [PubMed]
    [Google Scholar]
  27. Venkatesan BM, Bashir R. Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 2011; 6:615–624 [View Article] [PubMed]
    [Google Scholar]
  28. Yang Y, Liu R, Xie H, Hui Y, Jiao R et al. Advances in nanopore sequencing technology. J Nanosci Nanotechnol 2013; 13:4521–4538 [View Article] [PubMed]
    [Google Scholar]
  29. Petersen LM, Martin IW, Moschetti WE, Kershaw CM, Tsongalis GJ. Third-generation sequencing in the clinical laboratory: exploring the advantages and challenges of nanopore sequencing. J Clin Microbiol 2019; 58:e01315-19 [View Article] [PubMed]
    [Google Scholar]
  30. Donà V, Bernasconi OJ, Pires J, Collaud A, Overesch G et al. Heterogeneous Genetic Location of mcr-1 in Colistin-Resistant Escherichia coli Isolates from Humans and Retail Chicken Meat in Switzerland: Emergence of mcr-1-Carrying IncK2 Plasmids. Antimicrob Agents Chemother 2017; 61:11 [View Article] [PubMed]
    [Google Scholar]
  31. Donà V, Perreten V. Comparative Genomics of the First and Complete Genome of “Actinobacillus porcitonsillarum” Supports the Novel Species Hypothesis. Int J Genomics 2018; 2018:5261719 [View Article] [PubMed]
    [Google Scholar]
  32. Sambrook J, Russell DW. Isolation of High-Molecular-Weight DNA from mammalian cells using Proteinase K and phenol. CSH Protoc 2006; 2006:pdb.prot4036 [View Article] [PubMed]
    [Google Scholar]
  33. Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genom 2017; 3:e000132 [View Article] [PubMed]
    [Google Scholar]
  34. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  35. Antipov D, Hartwick N, Shen M, Raiko M, Lapidus A et al. plasmidSPAdes: assembling plasmids from whole genome sequencing data. Bioinformatics 2016; 32:3380–3387 [View Article] [PubMed]
    [Google Scholar]
  36. Foote SJ, Bossé JT, Bouevitch AB, Langford PR, Young NM et al. The complete genome sequence of Actinobacillus pleuropneumoniae L20 (serotype 5b). J Bacteriol 2008; 190:1495–1496 [View Article] [PubMed]
    [Google Scholar]
  37. Xu Z, Zhou Y, Li L, Zhou R, Xiao S et al. Genome biology of Actinobacillus pleuropneumoniae JL03, an isolate of serotype 3 prevalent in China. PLoS One 2008; 3:e1450 [View Article] [PubMed]
    [Google Scholar]
  38. Bossé JT, Chaudhuri RR, Li Y, Leanse LG, Fernandez Crespo R et al. Complete Genome Sequence of MIDG2331, a Genetically Tractable Serovar 8 Clinical Isolate of Actinobacillus pleuropneumoniae. Genome Announc 2016; 4:e01667-15 [View Article] [PubMed]
    [Google Scholar]
  39. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  40. Laing C, Buchanan C, Taboada EN, Zhang Y, Kropinski A et al. Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions. BMC Bioinformatics 2010; 11:461 [View Article] [PubMed]
    [Google Scholar]
  41. Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM et al. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 2018; 34:292–293 [View Article] [PubMed]
    [Google Scholar]
  42. Darmon E, Leach DRF. Bacterial genome instability. Microbiol Mol Biol Rev 2014; 78:1–39 [View Article] [PubMed]
    [Google Scholar]
  43. Bujold AR, Shure AE, Liu R, Kropinski AM, MacInnes JI. Investigation of putative invasion determinants of Actinobacillus species using comparative genomics. Genomics 2019; 111:59–66 [View Article] [PubMed]
    [Google Scholar]
  44. Rycroft AN, Williams D, McCandlish IA, Taylor DJ. Experimental reproduction of acute lesions of porcine pleuropneumonia with a haemolysin-deficient mutant of Actinobacillus pleuropneumoniae. Vet Rec 1991; 129:441–443 [View Article] [PubMed]
    [Google Scholar]
  45. Kuhnert P, Schlatter Y, Frey J. Characterization of the type I secretion system of the RTX toxin ApxII in “Actinobacillus porcitonsillarum.”. Vet Microbiol 2005; 107:225–232 [View Article] [PubMed]
    [Google Scholar]
  46. Frey J, Bosse JT, Chang YF, Cullen JM, Fenwick B et al. Actinobacillus pleuropneumoniae RTX-toxins: uniform designation of haemolysins, cytolysins, pleurotoxin and their genes. J Gen Microbiol 1993; 139:1723–1728 [View Article] [PubMed]
    [Google Scholar]
  47. Kuhnert P, Rohde J, Korczak BM. A new variant of Actinobacillus pleuropneumoniae serotype 3 lacking the entire apxII operon. J Vet Diagn Invest 2011; 23:556–559 [View Article] [PubMed]
    [Google Scholar]
  48. Schaller A, Kuhnert P, de la Puente-Redondo VA, Nicolet J, Frey J. Apx toxins in Pasteurellaceae species from animals. Vet Microbiol 2000; 74:365–376 [View Article] [PubMed]
    [Google Scholar]
  49. Mayor D, Korczak BM, Christensen H, Bisgaard M, Frey J et al. Distribution of RTX toxin genes in strains of [Actinobacillus] rossii and [Pasteurella] mairii. Vet Microbiol 2006; 116:194–201 [View Article]
    [Google Scholar]
  50. Ganeshapillai J, Boncheff AG, Slavic D, MacInnes J, Monteiro MA. The lipopolysaccharide core of Actinobacillus suis and its relationship to those of Actinobacillus pleuropneumoniae. Biochem Cell Biol 2011; 89:351–358 [View Article] [PubMed]
    [Google Scholar]
  51. Matter D, Rossano A, Sieber S, Perreten V. Small multidrug resistance plasmids in Actinobacillus porcitonsillarum. Plasmid 2008; 59:144–152 [View Article] [PubMed]
    [Google Scholar]
  52. Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 2010; 11:181–190 [View Article] [PubMed]
    [Google Scholar]
  53. Marraffini LA, Sontheimer EJ. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 2010; 463:568–571 [View Article] [PubMed]
    [Google Scholar]
  54. Makarova KS, Koonin EV. Annotation and classification of CRISPR-Cas Systems. Methods Mol Biol 2015; 1311:47–75 [View Article] [PubMed]
    [Google Scholar]
  55. Zankari E, Hasman H, Kaas RS, Seyfarth AM, Agersø Y et al. Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. J Antimicrob Chemother 2013; 68:771–777 [View Article] [PubMed]
    [Google Scholar]
  56. Bossé JT, Li Y, Rogers J, Fernandez Crespo R, Li Y et al. Whole genome sequencing for surveillance of antimicrobial resistance in Actinobacillus pleuropneumoniae. Front Microbiol 2017; 8:311 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000776
Loading
/content/journal/mgen/10.1099/mgen.0.000776
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error