Evidence for common ancestry and microevolution of passerine-adapted serovar Typhimurium in the UK and USA Open Access

Abstract

The evolution of serovar Typhimurium (. Typhimurium) within passerines has resulted in pathoadaptation of this serovar to the avian host in Europe. Recently, we identified an . Typhimurium lineage from passerines in North America. The emergence of passerine-adapted . Typhimurium in Europe and North America raises questions regarding its evolutionary origin. Here, we demonstrated that the UK and US passerine-adapted . Typhimurium shared a common ancestor from . 1838, and larids played a key role in the clonal expansion by disseminating the common ancestor between North America and Europe. Further, we identified virulence gene signatures common in the passerine- and larid-adapted . Typhimurium, including conserved pseudogenes in fimbrial gene and Type 3 Secretion System (T3SS) effector gene . However, the UK and US passerine-adapted . Typhimurium also possessed unique virulence gene signatures (i.e. pseudogenes in fimbrial gene and T3SS effector genes , , and ), and the majority of them (38/47) lost a virulence plasmid pSLT that was present in the larid-adapted . Typhimurium. These results provide evidence that passerine-adapted . Typhimurium share a common ancestor with those from larids, and the divergence of passerine- and larid-adapted . Typhimurium might be due to pseudogenization or loss of specific virulence genes.

Funding
This study was supported by the:
  • U.S. Department of Agriculture (Award PEN4522)
    • Principle Award Recipient: EdwardG. Dudley
  • U.S. Food and Drug Administration (Award 1 U19 FD007114-01)
    • Principle Award Recipient: EdwardG. Dudley
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000775
2022-02-23
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/2/mgen000775.html?itemId=/content/journal/mgen/10.1099/mgen.0.000775&mimeType=html&fmt=ahah

References

  1. Rabsch W, Andrews HL, Kingsley RA, Prager R, Tschäpe H et al. Salmonella enterica serotype Typhimurium and its host-adapted variants. Infect Immun 2002; 70:2249–2255 [View Article] [PubMed]
    [Google Scholar]
  2. Pasmans F, Van Immerseel F, Heyndrickx M, Martel A, Godard C et al. Host adaptation of pigeon isolates of Salmonella enterica subsp. enterica serovar Typhimurium variant Copenhagen phage type 99 is associated with enhanced macrophage cytotoxicity. Infect Immun 2003; 71:6068–6074 [View Article] [PubMed]
    [Google Scholar]
  3. Okoro CK, Barquist L, Connor TR, Harris SR, Clare S et al. Signatures of adaptation in human invasive Salmonella Typhimurium ST313 populations from sub-Saharan Africa. PLoS Negl Trop Dis 2015; 9:e0003611 [View Article] [PubMed]
    [Google Scholar]
  4. Van Puyvelde S, Pickard D, Vandelannoote K, Heinz E, Barbé B et al. An African Salmonella Typhimurium ST313 sublineage with extensive drug-resistance and signatures of host adaptation. Nat Commun 2019; 10:1–12 [View Article] [PubMed]
    [Google Scholar]
  5. Pulford CV, Perez-Sepulveda BM, Canals R, Bevington JA, Bengtsson RJ et al. Stepwise evolution of Salmonella Typhimurium ST313 causing bloodstream infection in Africa. Nat Microbiol 2021; 6:327–338 [View Article] [PubMed]
    [Google Scholar]
  6. Hughes LA, Shopland S, Wigley P, Bradon H, Leatherbarrow AH et al. Characterisation of Salmonella enterica serotype Typhimurium isolates from wild birds in northern England from 2005 - 2006. BMC Vet Res 2008; 4:1–10 [View Article] [PubMed]
    [Google Scholar]
  7. Lawson B, de Pinna E, Horton RA, Macgregor SK, John SK et al. Epidemiological evidence that garden birds are a source of human salmonellosis in England and Wales. PLoS One 2014; 9:e88968 [View Article] [PubMed]
    [Google Scholar]
  8. Söderlund R, Jernberg C, Trönnberg L, Pääjärvi A, Ågren E et al. Linked seasonal outbreaks of Salmonella Typhimurium among passerine birds, domestic cats and humans, Sweden, 2009 to 2016. Euro Surveill 2019; 24:1900074 [View Article] [PubMed]
    [Google Scholar]
  9. Refsum T, Vikøren T, Handeland K, Kapperud G, Holstad G. Epidemiologic and pathologic aspects of Salmonella typhimurium infection in passerine birds in Norway. J Wildl Dis 2003; 39:64–72 [View Article] [PubMed]
    [Google Scholar]
  10. Mather AE, Lawson B, de Pinna E, Wigley P, Parkhill J et al. Genomic Analysis of Salmonella enterica Serovar Typhimurium from Wild Passerines in England and Wales. Appl Environ Microbiol 2016; 82:6728–6735 [View Article] [PubMed]
    [Google Scholar]
  11. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 2001; 413:852–856 [View Article] [PubMed]
    [Google Scholar]
  12. Bawn M, Alikhan N-F, Thilliez G, Kirkwood M, Wheeler NE et al. Evolution of Salmonella enterica serotype Typhimurium driven by anthropogenic selection and niche adaptation. PLoS Genet 2020; 16:e1008850 [View Article] [PubMed]
    [Google Scholar]
  13. Hoiseth SK, Stocker BAD. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 1981; 291:238–239 [View Article] [PubMed]
    [Google Scholar]
  14. Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE et al. Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res 2009; 19:2279–2287 [View Article] [PubMed]
    [Google Scholar]
  15. Okoro CK, Kingsley RA, Connor TR, Harris SR, Parry CM et al. Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa. Nat Genet 2012; 44:1215–1221 [View Article] [PubMed]
    [Google Scholar]
  16. Mather AE, Reid SWJ, Maskell DJ, Parkhill J, Fookes MC et al. Distinguishable epidemics of multidrug-resistant Salmonella Typhimurium DT104 in different hosts. Science 2013; 341:1514–1517 [View Article] [PubMed]
    [Google Scholar]
  17. Petrovska L, Mather AE, AbuOun M, Branchu P, Harris SR et al. Microevolution of Monophasic Salmonella Typhimurium during Epidemic, United Kingdom, 2005-2010. Emerg Infect Dis 2016; 22:617–624 [View Article] [PubMed]
    [Google Scholar]
  18. Kirkwood M, Vohra P, Bawn M, Thilliez G, Pye H et al. Ecological niche adaptation of Salmonella Typhimurium U288 is associated with altered pathogenicity and reduced zoonotic potential. Commun Biol 2021; 4:498 [View Article] [PubMed]
    [Google Scholar]
  19. Tassinari E, Bawn M, Thilliez G, Charity O, Acton L et al. Whole-genome epidemiology links phage-mediated acquisition of a virulence gene to the clonal expansion of a pandemic Salmonella enterica serovar Typhimurium clone. Microb Genom 2020; 6:mgen000456 [View Article] [PubMed]
    [Google Scholar]
  20. Stevens MP, Kingsley RA. Salmonella pathogenesis and host-adaptation in farmed animals. Curr Opin Microbiol 2021; 63:52–58 [View Article] [PubMed]
    [Google Scholar]
  21. Achtman M, Wain J, Weill F-X, Nair S, Zhou Z et al. Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathog 2012; 8:e1002776 [View Article] [PubMed]
    [Google Scholar]
  22. Shariat N, Dudley EG. CRISPRs: molecular signatures used for pathogen subtyping. Appl Environ Microbiol 2014; 80:430–439 [View Article] [PubMed]
    [Google Scholar]
  23. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 1998; 95:3140–3145 [View Article] [PubMed]
    [Google Scholar]
  24. Barrangou R, Dudley EG. CRISPR-based typing and next-generation tracking technologies. Annu Rev Food Sci Technol 2016; 7:395–411 [View Article] [PubMed]
    [Google Scholar]
  25. Salipante SJ, Hall BG. Determining the limits of the evolutionary potential of an antibiotic resistance gene. Mol Biol Evol 2003; 20:653–659 [View Article] [PubMed]
    [Google Scholar]
  26. Fu Y, M’ikanatha NM, Whitehouse CA, Tate H, Ottesen A et al. Low occurrence of multi-antimicrobial and heavy metal resistance in Salmonella enterica from wild birds in the United States. Environ Microbiol 2021 [View Article] [PubMed]
    [Google Scholar]
  27. Hiley L, Graham RMA, Jennison AV. Genetic characterisation of variants of the virulence plasmid, pSLT, in Salmonella enterica serovar Typhimurium provides evidence of a variety of evolutionary directions consistent with vertical rather than horizontal transmission. PLoS One 2019; 14:e0215207 [View Article] [PubMed]
    [Google Scholar]
  28. Bäumler AJ, Tsolis RM, Heffron F. The lpf fimbrial operon mediates adhesion of Salmonella typhimurium to murine Peyer’s patches. Proc Natl Acad Sci U S A 1996; 93:279–283 [View Article] [PubMed]
    [Google Scholar]
  29. Althouse C, Patterson S, Fedorka-Cray P, Isaacson RE. Type 1 fimbriae of Salmonella enterica serovar Typhimurium bind to enterocytes and contribute to colonization of swine in vivo. Infect Immun 2003; 71:6446–6452 [View Article] [PubMed]
    [Google Scholar]
  30. Bhavsar AP, Brown NF, Stoepel J, Wiermer M, Martin DDO et al. The Salmonella type III effector SspH2 specifically exploits the NLR co-chaperone activity of SGT1 to subvert immunity. PLoS Pathog 2013; 9:e1003518 [View Article] [PubMed]
    [Google Scholar]
  31. Fàbrega A, Vila J. Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 2013; 26:308–341 [View Article] [PubMed]
    [Google Scholar]
  32. Kuźmińska-Bajor M, Grzymajło K, Ugorski M. Type 1 fimbriae are important factors limiting the dissemination and colonization of mice by Salmonella Enteritidis and contribute to the induction of intestinal inflammation during Salmonella invasion. Front Microbiol 2015; 6:276 [View Article] [PubMed]
    [Google Scholar]
  33. Dos Santos AMP, Ferrari RG, Conte-Junior CA. Virulence factors in Salmonella Typhimurium: the sagacity of a bacterium. Curr Microbiol 2019; 76:762–773 [View Article] [PubMed]
    [Google Scholar]
  34. Cohen E, Azriel S, Auster O, Gal A, Zitronblat C et al. Pathoadaptation of the passerine-associated Salmonella enterica serovar Typhimurium lineage to the avian host. PLoS Pathog 2021; 17:e1009451 [View Article] [PubMed]
    [Google Scholar]
  35. Kingsley RA, Kay S, Connor T, Barquist L, Sait L et al. Genome and transcriptome adaptation accompanying emergence of the definitive type 2 host-restricted Salmonella enterica serovar Typhimurium pathovar. mBio 2013; 4:e00565–13 [View Article] [PubMed]
    [Google Scholar]
  36. Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 2019; 15:e1006650 [View Article] [PubMed]
    [Google Scholar]
  37. Gross AO. The migration of kent island herring gulls. Bird-Banding 1940; 11:129 [View Article]
    [Google Scholar]
  38. Lonergan P, Mullarney K. Identification of American Herring Gull in a western European context. Dutch Bird 2004; 26:1–35
    [Google Scholar]
  39. Langridge GC, Fookes M, Connor TR, Feltwell T, Feasey N et al. Patterns of genome evolution that have accompanied host adaptation in Salmonella. Proc Natl Acad Sci U S A 2015; 112:863–868 [View Article] [PubMed]
    [Google Scholar]
  40. Yue M, Han X, De Masi L, Zhu C, Ma X et al. Allelic variation contributes to bacterial host specificity. Nat Commun 2015; 6:1–11 [View Article] [PubMed]
    [Google Scholar]
  41. Tanner JR, Kingsley RA. Evolution of Salmonella within Hosts. Trends Microbiol 2018; 26:986–998 [View Article] [PubMed]
    [Google Scholar]
  42. Sabbagh SC, Forest CG, Lepage C, Leclerc JM, Daigle F. So similar, yet so different: uncovering distinctive features in the genomes of Salmonella enterica serovars Typhimurium and Typhi. FEMS Microbiol Lett 2010; 305:1–13 [View Article] [PubMed]
    [Google Scholar]
  43. Fu Y, M’ikanatha NM, Lorch JM, Blehert DS, Berlowski-Zier B et al. Salmonella enterica serovar typhimurium from wild birds in the United States represent distinct lineages defined by bird type. bioRxiv 2021 2021 [View Article]
    [Google Scholar]
  44. Timme RE, Wolfgang WJ, Balkey M, Venkata SLG, Randolph R et al. Optimizing open data to support one health: best practices to ensure interoperability of genomic data from bacterial pathogens. One Health Outlook 2020; 2:20 [View Article] [PubMed]
    [Google Scholar]
  45. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  46. Zhou Z, Alikhan NF, Mohamed K, Fan Y, Achtman M et al. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res 2020; 30:138–152 [View Article]
    [Google Scholar]
  47. Rambaut A, Lam TT, Max Carvalho L, Pybus OG. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol 2016; 2:vew007 [View Article] [PubMed]
    [Google Scholar]
  48. Duchêne S, Duchêne D, Holmes EC, Ho SYW. The performance of the date-randomization test in phylogenetic analyses of time-structured virus data. Mol Biol Evol 2015; 32:1895–1906 [View Article] [PubMed]
    [Google Scholar]
  49. de Bernardi Schneider A, Ford CT, Hostager R, Williams J, Cioce M et al. StrainHub: a phylogenetic tool to construct pathogen transmission networks. Bioinformatics 2020; 36:945–947 [View Article] [PubMed]
    [Google Scholar]
  50. Nethery MA, Barrangou R. CRISPR Visualizer: rapid identification and visualization of CRISPR loci via an automated high-throughput processing pipeline. RNA Biol 2019; 16:577–584 [View Article] [PubMed]
    [Google Scholar]
  51. Shariat N, Sandt CH, DiMarzio MJ, Barrangou R, Dudley EG. CRISPR-MVLST subtyping of Salmonella enterica subsp. entericaserovars Typhimurium and Heidelberg and application in identifying outbreak isolates. BMC Microbiol 2013; 13:1–17 [View Article] [PubMed]
    [Google Scholar]
  52. Seemann T. Shovill: Faster SPAdes assembly of Illumina reads; 2017 https://github.com/tseemann/shovill
  53. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020; 75:3491–3500 [View Article] [PubMed]
    [Google Scholar]
  54. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article] [PubMed]
    [Google Scholar]
  55. Liu B, Zheng DD, Jin Q, Chen LH, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 2019; 47:D687–D692 [View Article] [PubMed]
    [Google Scholar]
  56. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000775
Loading
/content/journal/mgen/10.1099/mgen.0.000775
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed