1887

Abstract

is a well-known pathogen of fish, but is rarely involved in infections in humans and other mammals. In humans, the main clinical manifestation of infections is endocarditis usually related to the ingestion of contaminated food, such as undercooked fish and shellfish. This study presents the first complete genomic sequence of a clinical strain isolated from a patient with endocarditis and its comparative analysis with other genomes. This human isolate contains a circular chromosome of 2 099 060 bp and one plasmid of 50 557 bp. In comparison with other fully sequenced strains, the chromosomal DNA of Lg-Granada carries a low proportion of insertion sequence elements and a higher number of putative prophages. Our results show that, in general, is a highly recombinogenic species with an open pangenome in which almost 30 % of its genome has undergone horizontal transfers. Within the genus is the main donor of genetic components to but, taking Lg-Granada as a representative, this bacterium tends to import more genes from taxa than from other species.

Funding
This study was supported by the:
  • Ministerio de Ciencia e Innovación (Award RTI2018-098530-B-100)
    • Principle Award Recipient: AliciaGibello
  • Ministerio de Ciencia, Innovación y Universidades (Award BES-2015-074204)
    • Principle Award Recipient: CarlosFrances-Cuesta
  • Ministerio de Ciencia e Innovación (Award BFU2017-89594R)
    • Principle Award Recipient: FernandoGonzalez-Candelas
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000771
2022-02-23
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/2/mgen000771.html?itemId=/content/journal/mgen/10.1099/mgen.0.000771&mimeType=html&fmt=ahah

References

  1. EFSA Panel on Biological Hazards (BIOHAZ) Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D et al. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 11: suitability of taxonomic units notified to EFSA until September 2019. EFSA J 2020; 18:e05965 [View Article] [PubMed]
    [Google Scholar]
  2. Plumed-Ferrer C, Uusikylä K, Korhonen J, von Wright A. Characterization of Lactococcus lactis isolates from bovine mastitis. Vet Microbiol 2013; 167:592–599 [View Article] [PubMed]
    [Google Scholar]
  3. Plumed-Ferrer C, Barberio A, Franklin-Guild R, Werner B, McDonough P et al. Antimicrobial susceptibilities and random amplified polymorphic DNA-PCR fingerprint characterization of Lactococcus lactis ssp. lactis and Lactococcus garvieae isolated from bovine intramammary infections. J Dairy Sci 2015; 98:6216–6225 [View Article] [PubMed]
    [Google Scholar]
  4. Chen F, Zhang Z, Chen J. Infective endocarditis caused by Lactococcus lactis subsp. lactis and Pediococcus pentosaceus: A case report and literature review. Medicine (Baltimore) 2018; 97:e13658 [View Article] [PubMed]
    [Google Scholar]
  5. Shimizu A, Hase R, Suzuki D, Toguchi A, Otsuka Y et al. Lactococcus lactis cholangitis and bacteremia identified by MALDI-TOF mass spectrometry: A case report and review of the literature on Lactococcus lactis infection. J Infect Chemother 2019; 25:141–146 [View Article] [PubMed]
    [Google Scholar]
  6. Meyburgh CM, Bragg RR, Boucher CE. Lactococcus garvieae: an emerging bacterial pathogen of fish. Dis Aquat Organ 2017; 123:67–79 [View Article] [PubMed]
    [Google Scholar]
  7. Lee JY, Hyun M, Kim HA, Ryu SY. Infectious spondylitis and septicemia due to Lactococcus garvieae: a literature review of non-endocarditis cases. Infect Chemother 2020; 52: [View Article]
    [Google Scholar]
  8. Wang C-YC, Shie H-S, Chen S-C, Huang J-P, Hsieh I-C et al. Lactococcus garvieae infections in humans: possible association with aquaculture outbreaks. Int J Clin Pract 2007; 61:68–73 [View Article] [PubMed]
    [Google Scholar]
  9. Teixeira LM, Merquior VL, Vianni MC, Carvalho MG, Fracalanzza SE et al. Phenotypic and genotypic characterization of atypical Lactococcus garvieae strains isolated from water buffalos with subclinical mastitis and confirmation of L. garvieae as a senior subjective synonym of Enterococcus seriolicida. Int J Syst Bacteriol 1996; 46:664–668 [View Article] [PubMed]
    [Google Scholar]
  10. Tejedor JL, Vela AI, Gibello A, Casamayor A, Domínguez L et al. A genetic comparison of pig, cow and trout isolates of Lactococcus garvieae by PFGE analysis. Lett Appl Microbiol 2011; 53:614–619 [View Article] [PubMed]
    [Google Scholar]
  11. Kim JH, Go J, Cho CR, Kim JI, Lee MS et al. First report of human acute acalculous cholecystitis caused by the fish pathogen Lactococcus garvieae. J Clin Microbiol 2013; 51:712–714 [View Article] [PubMed]
    [Google Scholar]
  12. Gibello A, Galán-Sánchez F, Blanco MM, Rodríguez-Iglesias M, Domínguez L et al. The zoonotic potential of Lactococcus garvieae: An overview on microbiology, epidemiology, virulence factors and relationship with its presence in foods. Res Vet Sci 2016; 109:59–70 [View Article] [PubMed]
    [Google Scholar]
  13. Rösch RM, Buschmann K, Brendel L, Schwanz T, Vahl C-F. Lactococcus garvieae endocarditis in a prosthetic aortic valve: a case report and literature review. J Investig Med High Impact Case Rep 2019; 7:2324709619832052 [View Article] [PubMed]
    [Google Scholar]
  14. Malek A, De la Hoz A, Gomez-Villegas SI, Nowbakht C, Arias CA. Lactococcus garvieae, an unusual pathogen in infective endocarditis: case report and review of the literature. BMC Infect Dis 2019; 19:301 [View Article] [PubMed]
    [Google Scholar]
  15. Fortina MG, Ricci G, Foschino R, Picozzi C, Dolci P et al. Phenotypic typing, technological properties and safety aspects of Lactococcus garvieae strains from dairy environments. J Appl Microbiol 2007; 103:445–453 [View Article] [PubMed]
    [Google Scholar]
  16. El-Baradei G, Delacroix-Buchet A, Ogier JC. Bacterial biodiversity of traditional Zabady fermented milk. Int J Food Microbiol 2008; 121:295–301 [View Article] [PubMed]
    [Google Scholar]
  17. Alegría A, Alvarez-Martín P, Sacristán N, Fernández E, Delgado S et al. Diversity and evolution of the microbial populations during manufacture and ripening of Casín, a traditional Spanish, starter-free cheese made from cow’s milk. Int J Food Microbiol 2009; 136:44–51 [View Article] [PubMed]
    [Google Scholar]
  18. Flórez AB, Mayo B. The plasmid complement of the cheese isolate Lactococcus garvieae IPLA 31405 revealed adaptation to the dairy environment. PLoS One 2015; 10:e0126101 [View Article] [PubMed]
    [Google Scholar]
  19. Heras Cañas V, Pérez Ramirez MD, Bermudez Jiménez F, Rojo Martin MD, Miranda Casas C et al. Lactococcus garvieae endocarditis in a native valve identified by MALDI-TOF MS and PCR-based 16s rRNA in Spain: A case report. New Microbes New Infect 2015; 5:13–15 [View Article] [PubMed]
    [Google Scholar]
  20. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article] [PubMed]
    [Google Scholar]
  21. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP et al. A whole-genome assembly of Drosophila. Science 2000; 287:2196–2204 [View Article] [PubMed]
    [Google Scholar]
  22. Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA et al. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol 2015; 16:294 [View Article] [PubMed]
    [Google Scholar]
  23. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  24. Zhou CE, Smith J, Lam M, Zemla A, Dyer MD et al. MvirDB--a microbial database of protein toxins, virulence factors and antibiotic resistance genes for bio-defence applications. Nucleic Acids Res 2007; 35:D391–4 [View Article] [PubMed]
    [Google Scholar]
  25. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 2013; 57:3348–3357 [View Article] [PubMed]
    [Google Scholar]
  26. Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A. UniProtKB/Swiss-Prot. Methods Mol Biol 2007; 406:89–112 [View Article] [PubMed]
    [Google Scholar]
  27. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–21 [View Article] [PubMed]
    [Google Scholar]
  28. Akhter S, Aziz RK, Edwards RA. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res 2012; 40:e126 [View Article] [PubMed]
    [Google Scholar]
  29. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article] [PubMed]
    [Google Scholar]
  30. Rombel IT, Sykes KF, Rayner S, Johnston SA. ORF-FINDER: a vector for high-throughput gene identification. Gene 2002; 282:33–41 [View Article] [PubMed]
    [Google Scholar]
  31. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  32. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–6 [View Article] [PubMed]
    [Google Scholar]
  33. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24 [View Article]
    [Google Scholar]
  34. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF et al. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 2011; 12:124 [View Article] [PubMed]
    [Google Scholar]
  35. Ranwez V, Harispe S, Delsuc F, Douzery EJP. MACSE: Multiple Alignment of Coding SEquences accounting for frameshifts and stop codons. PLoS One 2011; 6:e22594 [View Article] [PubMed]
    [Google Scholar]
  36. Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 2013; 30:1188–1195 [View Article] [PubMed]
    [Google Scholar]
  37. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  38. Pla-Díaz M, Sánchez-Busó L, Giacani L, Šmajs D, Bosshard PP et al. Evolutionary processes in the emergence and recent spread of the syphilis agent, Treponema pallidum. Mol Biol Evol 2021msab318 [View Article] [PubMed]
    [Google Scholar]
  39. Strimmer K, von Haeseler A. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci U S A 1997; 94:6815–6819 [View Article] [PubMed]
    [Google Scholar]
  40. Münkemüller T, Lavergne S, Bzeznik B, Dray S, Jombart T et al. How to measure and test phylogenetic signal. Methods in Ecology and Evolution 2012; 3:743–756 [View Article]
    [Google Scholar]
  41. Shimodaira H, Hasegawa M. Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference. Molecular Biology and Evolution 1999; 16:1114–1116 [View Article]
    [Google Scholar]
  42. Strimmer K, Rambaut A. Inferring confidence sets of possibly misspecified gene trees. Proc Biol Sci 2002; 269:137–142 [View Article] [PubMed]
    [Google Scholar]
  43. R Core TeamR: a language and environment for statistical computing 2019
  44. Robinson O, Dylus D, Dessimoz C. Phylo.io: interactive viewing and comparison of large phylogenetic trees on the web. Mol Biol Evol 2016; 33:2163–2166 [View Article] [PubMed]
    [Google Scholar]
  45. Bannam TL, Teng WL, Bulach D, Lyras D, Rood JI. Functional identification of conjugation and replication regions of the tetracycline resistance plasmid pCW3 from Clostridium perfringens. J Bacteriol 2006; 188:4942–4951 [View Article] [PubMed]
    [Google Scholar]
  46. Mazmanian SK, Liu G, Jensen ER, Lenoy E, Schneewind O. Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proceedings of the National Academy of Sciences 2000; 97:5510–5515 [View Article] [PubMed]
    [Google Scholar]
  47. Löfling J, Vimberg V, Battig P, Henriques-Normark B. Cellular interactions by LPxTG-anchored pneumococcal adhesins and their streptococcal homologues. Cellular Microbiology 2011; 13:186–197 [View Article] [PubMed]
    [Google Scholar]
  48. Morita H, Toh H, Oshima K, Yoshizaki M, Kawanishi M et al. Complete genome sequence and comparative analysis of the fish pathogen Lactococcus garvieae. PLoS ONE 2011; 6:e23184 [View Article] [PubMed]
    [Google Scholar]
  49. Menéndez A, Fernández L, Reimundo P, Guijarro JA. Genes required for Lactococcus garvieae survival in a fish host. Microbiology 2007; 153:3286–3294 [View Article] [PubMed]
    [Google Scholar]
  50. Reimundo P, Menéndez A, Méndez J, Pérez-Pascual D, Navais R et al. dltA gene mutation in the teichoic acids alanylation system of Lactococcus garvieae results in diminished proliferation in its natural host. Veterinary Microbiology 2010; 143:434–439 [View Article] [PubMed]
    [Google Scholar]
  51. Denapaite D, Brückner R, Hakenbeck R, Vollmer W. Biosynthesis of teichoic acids in Streptococcus pneumoniae and closely related species: lessons from genomes. Microb Drug Resist 2012; 18:344–358 [View Article] [PubMed]
    [Google Scholar]
  52. Boucher I, Emond E, Parrot M, Moineau S. DNA sequence analysis of three Lactococcus lactis plasmids encoding phage resistance mechanisms. J Dairy Sci 2001; 84:1610–1620 [View Article] [PubMed]
    [Google Scholar]
  53. Mills S, McAuliffe OE, Coffey A, Fitzgerald GF, Ross RP. Plasmids of lactococci - genetic accessories or genetic necessities?. FEMS Microbiol Rev 2006; 30:243–273 [View Article] [PubMed]
    [Google Scholar]
  54. Aguado-Urda M, Gibello A, Blanco MM, López-Campos GH, Cutuli MT et al. Characterization of plasmids in a human clinical strain of Lactococcus garvieae. PLoS One 2012; 7:e40119 [View Article] [PubMed]
    [Google Scholar]
  55. Fallico V, McAuliffe O, Fitzgerald GF, Ross RP. Plasmids of raw milk cheese isolate Lactococcus lactis subsp. lactis biovar diacetylactis DPC3901 suggest a plant-based origin for the strain. Appl Environ Microbiol 2011; 77:6451–6462 [View Article] [PubMed]
    [Google Scholar]
  56. Laarman AJ, Mijnheer G, Mootz JM, van Rooijen WJM, Ruyken M et al. Staphylococcus aureus Staphopain A inhibits CXCR2-dependent neutrophil activation and chemotaxis. EMBO J 2012; 31:3607–3619 [View Article] [PubMed]
    [Google Scholar]
  57. Liu J, Ma’ayeh S, Peirasmaki D, Lundström-Stadelmann B, Hellman L et al. Secreted Giardia intestinalis cysteine proteases disrupt intestinal epithelial cell junctional complexes and degrade chemokines. Virulence 2018; 9:879–894 [View Article] [PubMed]
    [Google Scholar]
  58. Tosukhowong A, Zendo T, Visessanguan W, Roytrakul S, Pumpuang L et al. Garvieacin Q, a novel class II bacteriocin from Lactococcus garvieae BCC 43578. Appl Environ Microbiol 2012; 78:1619–1623 [View Article] [PubMed]
    [Google Scholar]
  59. Hoai TD, Nishiki I, Yoshida T. Properties and genomic analysis of Lactococcus garvieae lysogenic bacteriophage PLgT-1, a new member of Siphoviridae, with homology to Lactococcus lactis phages. Virus Res 2016; 222:13–23 [View Article] [PubMed]
    [Google Scholar]
  60. Eraclio G, Fortina MG, Labrie SJ, Tremblay DM, Moineau S. Characterization of prophages of Lactococcus garvieae. Sci Rep 2017; 7:1856 [View Article] [PubMed]
    [Google Scholar]
  61. Eraclio G, Ricci G, Fortina MG. Insertion sequence elements in Lactococcus garvieae. Gene 2015; 555:291–296 [View Article] [PubMed]
    [Google Scholar]
  62. Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev 2014; 38:865–891 [View Article] [PubMed]
    [Google Scholar]
  63. Bobay L-M, Ochman H. The evolution of bacterial genome architecture. Front Genet 2017; 8:72 [View Article] [PubMed]
    [Google Scholar]
  64. Ferrario C, Ricci G, Milani C, Lugli GA, Ventura M et al. Lactococcus garvieae: where is it from? A first approach to explore the evolutionary history of this emerging pathogen. PLoS One 2013; 8:e84796 [View Article] [PubMed]
    [Google Scholar]
  65. Reguera-Brito M, Galán-Sánchez F, Blanco MM, Rodríguez-Iglesias M, Domínguez L et al. Genetic analysis of human clinical isolates of Lactococcus garvieae: Relatedness with isolates from foods. Infect Genet Evol 2016; 37:185–191 [View Article] [PubMed]
    [Google Scholar]
  66. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  67. Shahi N, Mallik SK. Emerging bacterial fish pathogen Lactococcus garvieae RTCLI04, isolated from rainbow trout (Oncorhynchus mykiss): Genomic features and comparative genomics. Microb Pathog 2020; 147:104368 [View Article] [PubMed]
    [Google Scholar]
  68. Gyles C, Boerlin P. Horizontally transferred genetic elements and their role in pathogenesis of bacterial disease. Vet Pathol 2014; 51:328–340 [View Article] [PubMed]
    [Google Scholar]
  69. Awadalla P. The evolutionary genomics of pathogen recombination. Nat Rev Genet 2003; 4:50–60 [View Article] [PubMed]
    [Google Scholar]
  70. Lefébure T, Stanhope MJ. Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition. Genome Biol 2007; 8:R71 [View Article] [PubMed]
    [Google Scholar]
  71. Petersen L, Bollback JP, Dimmic M, Hubisz M, Nielsen R. Genes under positive selection in Escherichia coli. Genome Res 2007; 17:1336–1343 [View Article] [PubMed]
    [Google Scholar]
  72. Nishiki I, Oinaka D, Iwasaki Y, Yasuike M, Nakamura Y et al. Complete genome sequence of nonagglutinating Lactococcus garvieae strain 122061 isolated from yellowtail in Japan. Genome Announc 2016; 4:00592–16 [View Article] [PubMed]
    [Google Scholar]
  73. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 2009; 25:119–120 [View Article] [PubMed]
    [Google Scholar]
  74. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article] [PubMed]
    [Google Scholar]
  75. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016 https://ggplot2.tidyverse.org/
  76. Gu Z, Gu L, Eils R, Schlesner M, Brors B. circlize Implements and enhances circular visualization in R. Bioinformatics 2014; 30:2811–2812 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000771
Loading
/content/journal/mgen/10.1099/mgen.0.000771
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Supplementary material 3

EXCEL

Supplementary material 4

EXCEL

Supplementary material 5

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error