1887

Abstract

(family ) is an important bacterial pathogen that affects Japanese shrimp aquaculture. Only two whole-genome sequences of are publicly available, which has hampered our understanding of the pathogenesis of shrimp vibriosis caused by this bacterium. To gain insight into the genetic features, evolution and pathogenicity of we sequenced five strains (IFO 15640, IFO 15641, IFO 15642, TUMSAT-OK1 and TUMSAT-OK2) and performed comparative genomic analyses. Virulence factors and mobile genetic elements were detected. Furthermore, average nucleotide identities (ANIs), clusters of orthologous groups and phylogenetic relationships were evaluated. The genome consists of two circular chromosomes. Chromosome I sizes ranged from 4.1 to 4.3 Mb, the GC content ranged from 43.9 to 44.1 %, and the number of predicted protein-coding sequences (CDSs) ranged from 3620 to 3782. Chromosome II sizes ranged from 2.2 to 2.4 Mb, the GC content ranged from 43.5 to 43.8 %, and the number of predicted CDSs ranged from 1992 to 2273. All strains except IFO 15641 harboured one plasmid, having sizes that ranged from 150 to 285 kb. All five genomes had typical virulence factors, including adherence, anti-phagocytosis, flagella-related proteins and toxins (repeats-in-toxin and thermolabile haemolysin). The genomes also contained factors responsible for iron uptake and the type II, IV and VI secretion systems. The genome of strain TUMSAT-OK2 tended to encode more prophage regions than the other strains, whereas the genome of strain IFO 15640 had the highest number of regions encoding genomic islands. For comparative genome analysis, we used (strain CAIM 285) as a reference strain. ANIs between strain CAIM 285 and the five strains were >95 %, which indicated that these strains belong to the same species. Orthology cluster analysis showed that strains TUMSAT-OK1 and TUMSAT-OK2 had the greatest number of shared gene clusters, followed by strains CAIM 285 and IFO 15640. These strains were also the most closely related to each other in a phylogenetic analysis. This study presents the first comparative genome analysis of and these results will be useful for understanding the pathogenesis of this bacterium.

Funding
This study was supported by the:
  • Science and Technology Research Partnership for Sustainable Development (Award SATREPS JPMJSA1806)
    • Principle Award Recipient: IkuoHirono
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000766
2022-02-16
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/2/mgen000766.html?itemId=/content/journal/mgen/10.1099/mgen.0.000766&mimeType=html&fmt=ahah

References

  1. Sano T, Fukuda H. Principal microbial diseases of mariculture in Japan. Aquaculture 1987; 67:59–69 [View Article]
    [Google Scholar]
  2. Takahashi Y, Itami T, Maeda M, Kondo M. Bacterial and viral diseases of kuruma shrimp (Penaeus japonicus) in Japan. Fish Pathol 1998; 33:357–364 [View Article]
    [Google Scholar]
  3. Ishimaru K, Akagawa-Matsushita M, Muroga K. Vibrio penaeicida sp. nov., a pathogen of kuruma prawns (Penaeus japonicus). Int J Syst Bacteriol 1995; 45:134–138 [View Article]
    [Google Scholar]
  4. Takahashi Y, Shimoyama Y, Momoyama K. Pathogenicity and characteristics of Vibrio sp. isolated from cultured kuruma prawn Penaeus japonicus bate. Nippon Suisan Gakkai Shi 1985; 51:721–730 [View Article]
    [Google Scholar]
  5. Costa R, Mermoud I, Koblavi S, Morlet B, Haffner P et al. Isolation and characterization of bacteria associated with a Penaeus stylirostris disease (Syndrome 93) in New Caledonia. Aquaculture 1998; 164:297–309 [View Article]
    [Google Scholar]
  6. Aguirre-Guzman G, Mejia Ruiz H, Ascencio F. A review of extracellular virulence product of Vibrio species important in diseases of cultivated shrimp. Aquac Research 2004; 35:1395–1404 [View Article]
    [Google Scholar]
  7. Nakhamchik A, Wilde C, Rowe-Magnus DA. Cyclic-di-GMP regulates extracellular polysaccharide production, biofilm formation, and rugose colony development by Vibrio vulnificus. Appl Environ Microbiol 2008; 74:4199–4209 [View Article] [PubMed]
    [Google Scholar]
  8. Rønneseth A, Castillo D, D’Alvise P, Tønnesen Ø, Haugland G et al. Comparative assessment of Vibrio virulence in marine fish larvae. J Fish Dis 2017; 40:1373–1385 [View Article] [PubMed]
    [Google Scholar]
  9. Thompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S et al. Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 2005; 71:5107–5115 [View Article] [PubMed]
    [Google Scholar]
  10. Taniguchi H, Hirano H, Kubomura S, Higashi K, Mizuguchi Y. Comparison of the nucleotide sequences of the genes for the thermostable direct hemolysin and the thermolabile hemolysin from Vibrio parahaemolyticus. Microb Pathog 1986; 1:425–432 [View Article] [PubMed]
    [Google Scholar]
  11. Zhang XH, Meaden PG, Austin B. Duplication of hemolysin genes in a virulent isolate of Vibrio harveyi. Appl Environ Microbiol 2001; 67:3161–3167 [View Article] [PubMed]
    [Google Scholar]
  12. Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol 2019; 17:371–382 [View Article] [PubMed]
    [Google Scholar]
  13. Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P. Quorum sensing and quorum quenching in Vibrio harveyi: lessons learned from in vivo work. ISME J 2008; 2:19–26 [View Article] [PubMed]
    [Google Scholar]
  14. Zheng J, Shin OS, Cameron DE, Mekalanos JJ. Quorum sensing and a global regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae. Proc Natl Acad Sci U S A 2010; 107:21128–21133 [View Article] [PubMed]
    [Google Scholar]
  15. Navarro-Garcia F, Ruiz-Perez F, Cataldi Á, Larzábal M. Type VI secretion system in pathogenic Escherichia coli: structure, role in virulence, and acquisition. Front Microbiol 2019; 10:1965 [View Article] [PubMed]
    [Google Scholar]
  16. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 2006; 103:1528–1533 [View Article] [PubMed]
    [Google Scholar]
  17. Salomon D, Gonzalez H, Updegraff BL, Orth K. Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2. PLoS One 2013; 8:e61086 [View Article] [PubMed]
    [Google Scholar]
  18. Craig L, Li J. Type IV pili: paradoxes in form and function. Curr Opin Struct Biol 2008; 18:267–277 [View Article] [PubMed]
    [Google Scholar]
  19. Baker-Austin C, Oliver JD, Alam M, Ali A, Waldor MK et al. Vibrio spp. infections. Nat Rev Dis Primers 2018; 4:8 [View Article] [PubMed]
    [Google Scholar]
  20. Sobecky PA, Hazen TH. Horizontal gene transfer and mobile genetic elements in marine systems. Methods Mol Biol 2009; 532:435–453 [View Article] [PubMed]
    [Google Scholar]
  21. Hazen TH, Pan L, Gu JD, Sobecky PA. The contribution of mobile genetic elements to the evolution and ecology of Vibrios. FEMS Microbiol Ecol 2010; 74:485–499 [View Article] [PubMed]
    [Google Scholar]
  22. Talagrand-Reboul E, Colston SM, Graf J, Lamy B, Jumas-Bilak E. Comparative and evolutionary genomics of isolates provide insight into the pathoadaptation of Aeromonas. Genome Biol Evol 2020; 12:535–552 [View Article] [PubMed]
    [Google Scholar]
  23. Liang CY, Yang CH, Lai CH, Huang YH, Lin JN. Comparative genomics of 86 whole-genome sequences in the six species of the Eizabethkingia genus reveals intraspecific and interspecific divergence. Sci Rep 2019; 9:19167 [View Article] [PubMed]
    [Google Scholar]
  24. Goarant C, Herlin J, Brizard R, Marteau AL, Martin C et al. Toxic factors of Vibrio strains pathogenic to shrimp. Dis Aquat Organ 2000; 40:101–107 [View Article] [PubMed]
    [Google Scholar]
  25. Aguirre-Guzmán G, Ascencio F, Saulnier D. Pathogenicity of Vibrio penaeicida for white shrimp Litopenaeus vannamei: a cysteine protease-like exotoxin as a virulence factor. Dis Aquat Organ 2005; 67:201–207 [View Article] [PubMed]
    [Google Scholar]
  26. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  27. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  28. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article] [PubMed]
    [Google Scholar]
  29. Kundu R, Casey J, Sung WK. Hypo: super-fast & accurate polisher for long read genome assemblies. bioRxiv 2019
    [Google Scholar]
  30. Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 2018; 34:i142–i150 [View Article] [PubMed]
    [Google Scholar]
  31. Seppey M, Manni M, Zdobnov EM. BUSCO: Assessing Genome Assembly and Annotation Completeness. Methods Mol Biol 2019; 1962:227–245 [View Article] [PubMed]
    [Google Scholar]
  32. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 2015; 31:3350–3352 [View Article] [PubMed]
    [Google Scholar]
  33. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:1–15 [View Article] [PubMed]
    [Google Scholar]
  34. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  35. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:1–6 [View Article] [PubMed]
    [Google Scholar]
  36. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  37. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  38. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 2019; 47:D687–D692 [View Article] [PubMed]
    [Google Scholar]
  39. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article] [PubMed]
    [Google Scholar]
  40. Bertelli C, Laird MR, Williams KP, Lau BY et al.Simon Fraser University Research Computing Group Islandviewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 2017; 45:30–35 [View Article]
    [Google Scholar]
  41. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–21 [View Article] [PubMed]
    [Google Scholar]
  42. Liu M, Li X, Xie Y, Bi D, Sun J et al. ICEberg 2.0: an updated database of bacterial integrative and conjugative elements. Nucleic Acids Res 2019; 47:D660–D665 [View Article] [PubMed]
    [Google Scholar]
  43. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  44. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article] [PubMed]
    [Google Scholar]
  45. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  46. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  47. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  48. Henz SR, Huson DH, Auch AF, Nieselt-Struwe K, Schuster SC. Whole-genome prokaryotic phylogeny. Bioinformatics 2005; 21:2329–2335 [View Article] [PubMed]
    [Google Scholar]
  49. Lefort V, Desper R, Gascuel O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  50. Farris JS. Estimating phylogenetic trees from distance matrices. The American Naturalist 1972; 106:645–668 [View Article]
    [Google Scholar]
  51. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  52. Fitch WM. Distinguishing homologous from analogous proteins. Syst Zool 1970; 19:99–113 [View Article] [PubMed]
    [Google Scholar]
  53. Xu L, Dong Z, Fang L, Luo Y, Wei Z et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2019; 47:W52–W58 [View Article] [PubMed]
    [Google Scholar]
  54. Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011; 12:1–10 [View Article] [PubMed]
    [Google Scholar]
  55. Okada K, Iida T, Kita-Tsukamoto K, Honda T. Vibrios commonly possess two chromosomes. J Bacteriol 2005; 187:752–757 [View Article] [PubMed]
    [Google Scholar]
  56. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML et al. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 2000; 406:477–483 [View Article] [PubMed]
    [Google Scholar]
  57. Naka H, Dias GM, Thompson CC, Dubay C, Thompson FL et al. Complete genome sequence of the marine fish pathogen Vibrio anguillarum harboring the pJM1 virulence plasmid and genomic comparison with other virulent strains of V. anguillarum and V. ordalii. Infect Immun 2011; 79:2889–2900 [View Article] [PubMed]
    [Google Scholar]
  58. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  59. Figueras MJ, Beaz-Hidalgo R, Hossain MJ, Liles MR. Taxonomic affiliation of new genomes should be verified using average nucleotide identity and multilocus phylogenetic analysis. Genome Announc 2014; 2:00927–14 [View Article] [PubMed]
    [Google Scholar]
  60. Ina-Salwany MY, Al-Saari N, Mohamad A, Mursidi F-A, Mohd-Aris A et al. Vibriosis in fish: a review on disease development and prevention. J Aquat Anim Health 2019; 31:3–22 [View Article] [PubMed]
    [Google Scholar]
  61. Pérez-Reytor D, Jaña V, Pavez L, Navarrete P, García K. Accessory toxins of Vibrio pathogens and their role in epithelial disruption during infection. Front Microbiol 2018; 9:2248 [View Article] [PubMed]
    [Google Scholar]
  62. Shinoda S, Matsuoka H, Tsuchie T, Miyoshi S, Yamamoto S et al. Purification and characterization of a lecithin-dependent haemolysin from Escherichia coli transformed by a Vibrio parahaemolyticus gene. J Gen Microbiol 1991; 137:2705–2711 [View Article] [PubMed]
    [Google Scholar]
  63. Xu M, Wu J, Chen L. Virulence, antimicrobial and heavy metal tolerance, and genetic diversity of Vibrio cholerae recovered from commonly consumed freshwater fish. Environ Sci Pollut Res Int 2019; 26:27338–27352 [View Article] [PubMed]
    [Google Scholar]
  64. Deng Y, Xu H, Su Y, Liu S, Xu L et al. Horizontal gene transfer contributes to virulence and antibiotic resistance of Vibrio harveyi 345 based on complete genome sequence analysis. BMC Genomics 2019; 20:761 [View Article] [PubMed]
    [Google Scholar]
  65. Bej AK, Patterson DP, Brasher CW, Vickery MC, Jones DD et al. Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh. J Microbiol Methods 1999; 36:215–225 [View Article] [PubMed]
    [Google Scholar]
  66. DePaola A, Nordstrom JL, Bowers JC, Wells JG, Cook DW. Seasonal abundance of total and pathogenic Vibrio parahaemolyticus in Alabama oysters. Appl Environ Microbiol 2003; 69:1521–1526 [View Article] [PubMed]
    [Google Scholar]
  67. Lally ET, Hill RB, Kieba IR, Korostoff J. The interaction between RTX toxins and target cells. Trends Microbiol 1999; 7:356–361 [View Article] [PubMed]
    [Google Scholar]
  68. Håkonsholm F, Lunestad BT, Aguirre Sánchez JR, Martinez-Urtaza J, Marathe NP et al. Vibrios from the Norwegian marine environment: Characterization of associated antibiotic resistance and virulence genes. Microbiologyopen 2020; 9:e1093 [View Article] [PubMed]
    [Google Scholar]
  69. Craig L, Taylor RK, Pique ME, Adair BD, Arvai AS et al. Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol Cell 2003; 11:1139–1150 [View Article] [PubMed]
    [Google Scholar]
  70. Zhang X, Sun J, Chen F, Qi H, Chen L et al. Phenotypic and genomic characterization of a Vibrio parahaemolyticus strain causing disease in Penaeus vannamei provides insights into its niche adaptation and pathogenic mechanism. Microb Genom 2021; 7:000549 [View Article] [PubMed]
    [Google Scholar]
  71. Rocha-Estrada J, Aceves-Diez AE, Guarneros G, de la Torre M. The RNPP family of quorum-sensing proteins in Gram-positive bacteria. Appl Microbiol Biotechnol 2010; 87:913–923 [View Article] [PubMed]
    [Google Scholar]
  72. Prithvisagar KS, Krishna Kumar B, Kodama T, Rai P, Iida T et al. Whole genome analysis unveils genetic diversity and potential virulence determinants in Vibrio parahaemolyticus associated with disease outbreak among cultured Litopenaeus vannamei (Pacific white shrimp) in India. Virulence 2021; 12:1936–1949 [View Article] [PubMed]
    [Google Scholar]
  73. Abendroth J, Kreger AC, Hol WGJ. The dimer formed by the periplasmic domain of EpsL from the Type 2 Secretion System of Vibrio parahaemolyticus. J Struct Biol 2009; 168:313–322 [View Article] [PubMed]
    [Google Scholar]
  74. Hood RD, Singh P, Hsu F, Güvener T, Carl MA et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 2010; 7:25–37 [View Article] [PubMed]
    [Google Scholar]
  75. Journet L, Cascales E. The Type VI secretion system in Escherichia coli and related species. EcoSal Plus 2016; 7: [View Article] [PubMed]
    [Google Scholar]
  76. Brunet YR, Espinosa L, Harchouni S, Mignot T, Cascales E. Imaging type VI secretion-mediated bacterial killing. Cell Rep 2013; 3:36–41 [View Article] [PubMed]
    [Google Scholar]
  77. Wong HC, Liu SH, Wang TK, Lee CL, Chiou CS et al. Characteristics of Vibrio parahaemolyticus O3:K6 from Asia. Appl Environ Microbiol 2000; 66:3981–3986 [View Article] [PubMed]
    [Google Scholar]
  78. Mandal S, DebMandal M, Pal NK. Plasmid mediated antibiotic resistance of Vibrio cholerae O1 biotype El Tor serotype Ogawa associated with an outbreak in Kolkata, India. Asian Pacific Journal of Tropical Medicine 2010; 3:637–641 [View Article]
    [Google Scholar]
  79. Yu L, Zhou Y, Wang R, Lou J, Zhang L et al. Multiple antibiotic resistance of Vibrio cholerae serogroup O139 in China from 1993 to 2009. PLoS One 2012; 7:e38633 [View Article] [PubMed]
    [Google Scholar]
  80. Han JE, Mohney LL, Tang KFJ, Pantoja CR, Lightner DV. Plasmid mediated tetracycline resistance of Vibrio parahaemolyticus associated with acute hepatopancreatic necrosis disease (AHPND) in shrimps. Aquaculture Reports 2015; 2:17–21 [View Article]
    [Google Scholar]
  81. Mihara T, Nishimura Y, Shimizu Y, Nishiyama H, Yoshikawa G et al. Linking virus genomes with host taxonomy. Viruses 2016; 8:66 [View Article] [PubMed]
    [Google Scholar]
  82. Tan CW, Rukayadi Y, Hasan H, Abdul-Mutalib N-A, Jambari NN et al. Isolation and characterization of six Vibrio parahaemolyticus lytic bacteriophages from seafood samples. Front Microbiol 2021; 12:616548 [View Article] [PubMed]
    [Google Scholar]
  83. Luo P, Yun L, Li Y, Tian Y, Liu Q et al. Complete genomic sequence of the Vibrio alginolyticus bacteriophage Vp670 and characterization of the lysis-related genes, cwlQ and holA. BMC Genomics 2018; 19:741 [View Article] [PubMed]
    [Google Scholar]
  84. Hacker J, Kaper JB. Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 2000; 54:641–679 [View Article] [PubMed]
    [Google Scholar]
  85. Klein S, Pipes S, Lovell CR. Occurrence and significance of pathogenicity and fitness islands in environmental vibrios. AMB Express 2018; 8:177 [View Article] [PubMed]
    [Google Scholar]
  86. Wozniak RAF, Waldor MK. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 2010; 8:552–563 [View Article] [PubMed]
    [Google Scholar]
  87. Christie PJ, Whitaker N, González-Rivera C. Mechanism and structure of the bacterial type IV secretion systems. Biochim Biophys Acta 2014; 1843:1578–1591 [View Article] [PubMed]
    [Google Scholar]
  88. Virolle C, Goldlust K, Djermoun S, Bigot S, Lesterlin C. Plasmid transfer by conjugation in gram-negative bacteria: from the cellular to the community level. Genes (Basel) 2020; 11:E1239 [View Article] [PubMed]
    [Google Scholar]
  89. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 2003; 4:41 [View Article] [PubMed]
    [Google Scholar]
  90. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  91. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article] [PubMed]
    [Google Scholar]
  92. Sawabe T, Ogura Y, Matsumura Y, Feng G, Amin AR et al. Updating the Vibrio clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the description of Vibrio tritonius sp. nov. Front Microbiol 2013; 4:414 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000766
Loading
/content/journal/mgen/10.1099/mgen.0.000766
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error