1887

Abstract

Rhizosphere colonization by bacteria involves molecular and cellular mechanisms, such as motility and chemotaxis, biofilm formation, metabolic versatility, or biosynthesis of secondary metabolites, among others. Nonetheless, there is limited knowledge concerning the main regulatory factors that drive the rhizosphere colonization process. Here we show the importance of the AmrZ and FleQ transcription factors for adaption in the plant growth-promoting rhizobacterium (PGPR) and rhizosphere colonization model F113. RNA-Seq analyses of F113 grown in liquid cultures either in exponential and stationary growth phase, and rhizosphere conditions, revealed that rhizosphere is a key driver of global changes in gene expression in this bacterium. Regarding the genetic background, this work has revealed that a mutation in causes considerably more alterations in the gene expression profile of this bacterium than a mutation in under rhizosphere conditions. The functional analysis has revealed that in F113, the transcription factors AmrZ and FleQ regulate genes involved in diverse bacterial functions. Notably, in the rhizosphere, these transcription factors antagonistically regulate genes related to motility, biofilm formation, nitrogen, sulfur, and amino acid metabolism, transport, signalling, and secretion, especially the type VI secretion systems. These results define the regulon of two important bifunctional transcriptional regulators in pseudomonads during the process of rhizosphere colonization.

Funding
This study was supported by the:
  • Ministerio de Educación, Cultura y Deporte (Award FPU16/05513)
    • Principle Award Recipient: EstherBlanco-Romero
  • Ministerio de Ciencia, Innovación y Universidades (Award RTI2018-093991-B-I00)
    • Principle Award Recipient: MartaMartín
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000750
2022-01-11
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/1/mgen000750.html?itemId=/content/journal/mgen/10.1099/mgen.0.000750&mimeType=html&fmt=ahah

References

  1. Huang H, Shao X, Xie Y, Wang T, Zhang Y et al. An integrated genomic regulatory network of virulence-related transcriptional factors in Pseudomonas aeruginosa. Nat Commun 2019; 10:2931 [View Article] [PubMed]
    [Google Scholar]
  2. Pérez-Mendoza D, Felipe A, Ferreiro MD, Sanjuán J, Gallegos MT. AmrZ and FleQ co-regulate cellulose production in Pseudomonas syringae pv. tomato DC3000. Front Microbiol 2019; 10:746 [View Article] [PubMed]
    [Google Scholar]
  3. Baynham PJ, Brown AL, Hall LL, Wozniak DJ. Pseudomonas aeruginosa AlgZ, a ribbon-helix-helix DNA-binding protein, is essential for alginate synthesis and algD transcriptional activation. Mol Microbiol 1999; 33:1069–1080 [View Article] [PubMed]
    [Google Scholar]
  4. Jones CJ, Newsom D, Kelly B, Irie Y, Jennings LK et al. ChIP-Seq and RNA-Seq reveal an AmrZ-mediated mechanism for cyclic di-GMP synthesis and biofilm development by Pseudomonas aeruginosa. PLoS Pathog 2014; 10:e1003984 [View Article] [PubMed]
    [Google Scholar]
  5. Garrett ES, Perlegas D, Wozniak DJ. Negative control of flagellum synthesis in Pseudomonas aeruginosa is modulated by the alternative sigma factor AlgT (AlgU). J Bacteriol 1999; 181:7401–7404 [View Article] [PubMed]
    [Google Scholar]
  6. Tart AH, Blanks MJ, Wozniak DJ. The AlgT-dependent transcriptional regulator AmrZ (AlgZ) inhibits flagellum biosynthesis in mucoid, nonmotile Pseudomonas aeruginosa cystic fibrosis isolates. J Bacteriol 2006; 188:6483–6489 [View Article] [PubMed]
    [Google Scholar]
  7. Hou L, Debru A, Chen Q, Bao Q, Li K. AmrZ regulates swarming motility through cyclic di-GMP-dependent motility inhibition and controlling pel polysaccharide production in Pseudomonas aeruginosa PA14. Front Microbiol 2019; 10:1847 [View Article] [PubMed]
    [Google Scholar]
  8. Waligora EA, Ramsey DM, Pryor EE Jr, Lu H, Hollis T et al. AmrZ beta-sheet residues are essential for DNA binding and transcriptional control of Pseudomonas aeruginosa virulence genes. J Bacteriol 2010; 192:5390–5401 [View Article] [PubMed]
    [Google Scholar]
  9. Pryor EE Jr, Waligora EA, Xu B, Dellos-Nolan S, Wozniak DJ et al. The transcription factor AmrZ utilizes multiple DNA binding modes to recognize activator and repressor sequences of Pseudomonas aeruginosa virulence genes. PLoS Pathog 2012; 8:e1002648 [View Article] [PubMed]
    [Google Scholar]
  10. Nogales J, Vargas P, Farias GA, Olmedilla A, Sanjuán J et al. FleQ coordinates flagellum-dependent and -independent motilities in Pseudomonas syringae pv. tomato DC3000. Appl Environ Microbiol 2015; 81:7533–7545 [View Article] [PubMed]
    [Google Scholar]
  11. Prada-Ramírez HA, Pérez-Mendoza D, Felipe A, Martínez-Granero F, Rivilla R et al. AmrZ regulates cellulose production in Pseudomonas syringae pv. tomato DC3000. Mol Microbiol 2016; 99:960–977 [View Article] [PubMed]
    [Google Scholar]
  12. Pérez-Mendoza D, Felipe A, Ferreiro MD, Sanjuán J, Gallegos MT. AmrZ and FleQ co-regulate cellulose production in Pseudomonas syringae pv. tomato DC3000. Front Microbiol 2019; 10:746 [View Article] [PubMed]
    [Google Scholar]
  13. Liu H, Yan H, Xiao Y, Nie H, Huang Q et al. The exopolysaccharide gene cluster pea is transcriptionally controlled by RpoS and repressed by AmrZ in Pseudomonas putida KT2440. Microbiol Res 2019; 218:1–11 [View Article] [PubMed]
    [Google Scholar]
  14. Baltrus DA, Dougherty K, Diaz B, Murillo R. Evolutionary plasticity of AmrZ regulation in Pseudomonas. mSphere 2018; 3:e00132-18 [View Article] [PubMed]
    [Google Scholar]
  15. Huang H, Shao X, Xie Y, Wang T, Zhang Y et al. An integrated genomic regulatory network of virulence-related transcriptional factors in Pseudomonas aeruginosa. Nat Commun 2019; 10:1–13 [View Article] [PubMed]
    [Google Scholar]
  16. Arora SK, Ritchings BW, Almira EC, Lory S, Ramphal R. A transcriptional activator, FleQ, regulates mucin adhesion and flagellar gene expression in Pseudomonas aeruginosa in a cascade manner. J Bacteriol 1997; 179:5574–5581 [View Article] [PubMed]
    [Google Scholar]
  17. Hu R-M, Yang T-C, Yang S-H, Tseng Y-H. Deduction of upstream sequences of Xanthomonas campestris flagellar genes responding to transcription activation by FleQ. Biochem Biophys Res Commun 2005; 335:1035–1043 [View Article] [PubMed]
    [Google Scholar]
  18. Bae N, Park H-J, Park H, Kim M, Do E et al. Elucidating functions of FleQ in Xanthomonas oryzae pv. oryzae by comparative proteomic and phenotypic analyses. Int J Mol Sci 2018; 19:10 [View Article] [PubMed]
    [Google Scholar]
  19. Hickman JW, Harwood CS. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 2008; 69:376–389 [View Article] [PubMed]
    [Google Scholar]
  20. Wang Y, Li Y, Wang J, Wang X. FleQ regulates both the type VI secretion system and flagella in Pseudomonas putida. Biotechnol Appl Biochem 2018; 65:419–427 [View Article] [PubMed]
    [Google Scholar]
  21. Garrido-Sanz D, Meier-Kolthoff JP, Göker M, Martín M, Rivilla R et al. Genomic and genetic diversity within the Pseudomonas fluorescens complex. PLoS One 2016; 11:e0150183 [View Article] [PubMed]
    [Google Scholar]
  22. Marshall B, Robleto EA, Wetzler R, Kulle P, Casaz P et al. The adnA transcriptional factor affects persistence and spread of Pseudomonas fluorescens under natural field conditions. Appl Environ Microbiol 2001; 67:852–857 [View Article] [PubMed]
    [Google Scholar]
  23. Casaz P, Happel A, Keithan J, Read DL, Strain SR et al. The Pseudomonas fluorescens transcription activator AdnA is required for adhesion and motility. Microbiology (Reading) 2001; 147:355–361 [View Article] [PubMed]
    [Google Scholar]
  24. Robleto EA, López-Hernández I, Silby MW, Levy SB. Genetic analysis of the AdnA regulon in Pseudomonas fluorescens: nonessential role of flagella in adhesion to sand and biofilm formation. J Bacteriol 2003; 185:453–460 [View Article] [PubMed]
    [Google Scholar]
  25. Giddens SR, Jackson RW, Moon CD, Jacobs MA, Zhang X-X et al. Mutational activation of niche-specific genes provides insight into regulatory networks and bacterial function in a complex environment. Proc Natl Acad Sci U S A 2007; 104:18247–18252 [View Article] [PubMed]
    [Google Scholar]
  26. Garrido-Sanz D, Redondo-Nieto M, Martin M, Rivilla R. Comparative genomics of the Pseudomonas corrugata subgroup reveals high species diversity and allows the description of Pseudomonas ogarae sp. nov. Microb Genom 2021; 7: [View Article] [PubMed]
    [Google Scholar]
  27. Martínez-Granero F, Redondo-Nieto M, Vesga P, Martín M, Rivilla R. AmrZ is a global transcriptional regulator implicated in iron uptake and environmental adaption in P. fluorescens F113. BMC Genomics 2014; 15:237 [View Article] [PubMed]
    [Google Scholar]
  28. Muriel C, Arrebola E, Redondo-Nieto M, Martínez-Granero F, Jalvo B et al. AmrZ is a major determinant of c-di-GMP levels in Pseudomonas fluorescens F113. Sci Rep 2018; 8:1979 [View Article] [PubMed]
    [Google Scholar]
  29. Capdevila S, Martínez-Granero FM, Sánchez-Contreras M, Rivilla R, Martín M. Analysis of Pseudomonas fluorescens F113 genes implicated in flagellar filament synthesis and their role in competitive root colonization. Microbiology (Reading) 2004; 150:3889–3897 [View Article] [PubMed]
    [Google Scholar]
  30. Blanco-Romero E, Redondo-Nieto M, Martínez-Granero F, Garrido-Sanz D, Ramos-González MI et al. Genome-wide analysis of the FleQ direct regulon in Pseudomonas fluorescens F113 and Pseudomonas putida KT2440. Sci Rep 2018; 8:13145 [View Article] [PubMed]
    [Google Scholar]
  31. Licciardello G, Ferraro R, Russo M, Strozzi F, Catara AF et al. Transcriptome analysis of Pseudomonas mediterranea and P. corrugata plant pathogens during accumulation of medium-chain-length PHAs by glycerol bioconversion. N Biotechnol 2017; 37:39–47 [View Article] [PubMed]
    [Google Scholar]
  32. Cornforth DM, Dees JL, Ibberson CB, Huse HK, Mathiesen IH et al. Pseudomonas aeruginosa transcriptome during human infection. Proc Natl Acad Sci U S A 2018; 115:E5125–E5134 [View Article] [PubMed]
    [Google Scholar]
  33. Hueso-Gil Á, Calles B, O’Toole GA, de Lorenzo V. Gross transcriptomic analysis of Pseudomonas putida for diagnosing environmental shifts. Microb Biotechnol 2020; 13:263–273 [View Article] [PubMed]
    [Google Scholar]
  34. Vesga P, Flury P, Vacheron J, Keel C, Croll D et al. Transcriptome plasticity underlying plant root colonization and insect invasion by Pseudomonas protegens. ISME J 2020; 14:2766–2782 [View Article] [PubMed]
    [Google Scholar]
  35. Shanahan P, O’sullivan DJ, Simpson P, Glennon JD, O’gara F. Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 1992; 58:353–358 [View Article] [PubMed]
    [Google Scholar]
  36. Martínez-Granero F, Navazo A, Barahona E, Redondo-Nieto M, Rivilla R et al. The Gac-Rsm and SadB signal transduction pathways converge on AlgU to downregulate motility in Pseudomonas fluorescens. PLoS One 2012; 7:e31765 [View Article] [PubMed]
    [Google Scholar]
  37. Scher FM, Baker R. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to fusarium wilt pathogens. Phytopathology 1982; 72:1567 [View Article]
    [Google Scholar]
  38. Durán D, Bernal P, Vazquez-Arias D, Blanco-Romero E, Garrido-Sanz D et al. Pseudomonas fluorescens F113 type VI secretion systems mediate bacterial killing and adaption to the rhizosphere microbiome. Sci Rep 2021; 11:5772 [View Article] [PubMed]
    [Google Scholar]
  39. Fahraeus G. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol 1957; 16:374–381 [View Article] [PubMed]
    [Google Scholar]
  40. Grotzer MA, Patti R, Geoerger B, Eggert A, Chou TT et al. Biological stability of RNA isolated from RNAlater-treated brain tumor and neuroblastoma xenografts. Med Pediatr Oncol 2000; 34:438–442 [View Article] [PubMed]
    [Google Scholar]
  41. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  42. Winsor GL, Lam DKW, Fleming L, Lo R, Whiteside MD et al. Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res 2011; 39:D596–600 [View Article] [PubMed]
    [Google Scholar]
  43. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:1–9 [View Article] [PubMed]
    [Google Scholar]
  44. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol 2017; 34:2115–2122 [View Article] [PubMed]
    [Google Scholar]
  45. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  46. Tjaden B. De novo assembly of bacterial transcriptomes from RNA-seq data. Genome Biol 2015; 16:1 [View Article] [PubMed]
    [Google Scholar]
  47. Tjaden B. A computational system for identifying operons based on RNA-seq data. Methods 2020; 176:62–70 [View Article] [PubMed]
    [Google Scholar]
  48. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 2017; 14:417–419 [View Article] [PubMed]
    [Google Scholar]
  49. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15:12 [View Article] [PubMed]
    [Google Scholar]
  50. Huber W, von Heydebreck A, Sültmann H, Poustka A, Vingron M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 2002; 18 Suppl 1:S96–104 [View Article] [PubMed]
    [Google Scholar]
  51. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H et al. Gene Ontology: tool for the unification of biology. Nat Genet 2000; 25:25–29 [View Article]
    [Google Scholar]
  52. Kanehisa M. The KEGG database. Novartis Found Symp 2002; 247:91–101 [View Article] [PubMed]
    [Google Scholar]
  53. Hosack DA, Dennis G, Sherman BT, Lane HC, Lempicki RA. Identifying biological themes within lists of genes with EASE. Genome Biol 2003; 4:R70 [View Article] [PubMed]
    [Google Scholar]
  54. Wickham H. ggplot2. WIREs Comp Stat 2011; 3:180–185 [View Article]
    [Google Scholar]
  55. Kolde R, Kolde MR. Package ‘pheatmap. R Package 2015; 1:790
    [Google Scholar]
  56. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 2017; 33:2938–2940 [View Article] [PubMed]
    [Google Scholar]
  57. Villacieros M, Power B, Sánchez-Contreras M, Lloret J, Oruezabal RI et al. Colonization behaviour of Pseudomonas fluorescens and Sinorhizobium meliloti in the alfalfa (Medicago sativa) rhizosphere. Plant and Soil 2003; 251:47–54 [View Article]
    [Google Scholar]
  58. Perez-Rueda E, Hernandez-Guerrero R, Martinez-Nuñez MA, Armenta-Medina D, Sanchez I et al. Abundance, diversity and domain architecture variability in prokaryotic DNA-binding transcription factors. PLoS One 2018; 13:e0195332 [View Article] [PubMed]
    [Google Scholar]
  59. Sanchez I, Hernandez-Guerrero R, Mendez-Monroy PE, Martinez-Nuñez MA, Ibarra JA et al. Evaluation of the abundance of DNA-Binding transcription factors in prokaryotes. Genes (Basel) 2020; 11:E52 [View Article] [PubMed]
    [Google Scholar]
  60. Blanco-Romero E, Garrido-Sanz D, Rivilla R, Redondo-Nieto M, Martín M. In silico characterization and phylogenetic distribution of extracellular matrix components in the model rhizobacteria Pseudomonas fluorescens F113 and other pseudomonads. Microorganisms 2020; 8:11 [View Article] [PubMed]
    [Google Scholar]
  61. Wu X, Liu J, Zhang W, Zhang L. Multiple-level regulation of 2,4-diacetylphloroglucinol production by the sigma regulator PsrA in Pseudomonas fluorescens 2P24. PLoS One 2012; 7:11 [View Article] [PubMed]
    [Google Scholar]
  62. Matsuyama BY, Krasteva PV, Baraquet C, Harwood CS, Sondermann H et al. Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2016; 113:E209–18 [View Article] [PubMed]
    [Google Scholar]
  63. Jiménez-Fernández A, López-Sánchez A, Jiménez-Díaz L, Navarrete B, Calero P et al. Complex Interplay between FleQ, Cyclic diguanylate and multiple σ factors coordinately regulates flagellar motility and biofilm development in Pseudomonas putida. PLoS One 2016; 11:e0163142 [View Article] [PubMed]
    [Google Scholar]
  64. Baraquet C, Harwood CS. FleQ DNA binding consensus sequence revealed by studies of FleQ-dependent regulation of biofilm gene expression in Pseudomonas aeruginosa. J Bacteriol 2016; 198:178–186 [View Article] [PubMed]
    [Google Scholar]
  65. Xiao Y, Nie H, Liu H, Luo X, Chen W et al. C-di-GMP regulates the expression of lapA and bcs operons via FleQ in Pseudomonas putida KT2440. Environ Microbiol Rep 2016; 8:659–666 [View Article] [PubMed]
    [Google Scholar]
  66. Nie H, Xiao Y, Liu H, He J, Chen W et al. FleN and FleQ play a synergistic role in regulating lapA and bcs operons in Pseudomonas putida KT2440. Environ Microbiol Rep 2017; 9:571–580 [View Article] [PubMed]
    [Google Scholar]
  67. Molina-Henares MA, Ramos-González MI, Daddaoua A, Fernández-Escamilla AM, Espinosa-Urgel M. FleQ of Pseudomonas putida KT2440 is a multimeric cyclic diguanylate binding protein that differentially regulates expression of biofilm matrix components. Res Microbiol 2017; 168:36–45 [View Article] [PubMed]
    [Google Scholar]
  68. Xiao Y, Chen H, Nie L, He M, Peng Q et al. Identification of c-di-GMP/FleQ-regulated new target genes, including cyaA, encoding adenylate cyclase, in Pseudomonas putida. mSystems 2021; 6:e00295-21 [View Article] [PubMed]
    [Google Scholar]
  69. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2004; 2:95–108 [View Article] [PubMed]
    [Google Scholar]
  70. Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA et al. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 2016; 14:563–575 [View Article] [PubMed]
    [Google Scholar]
  71. Barahona E, Navazo A, Yousef-Coronado F, Aguirre de Cárcer D, Martínez-Granero F et al. Efficient rhizosphere colonization by Pseudomonas fluorescens f113 mutants unable to form biofilms on abiotic surfaces. Environ Microbiol 2010; 12:3185–3195 [View Article] [PubMed]
    [Google Scholar]
  72. Barahona E, Navazo A, Martínez-Granero F, Zea-Bonilla T, Pérez-Jiménez RM et al. Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. Appl Environ Microbiol 2011; 77:5412–5419 [View Article] [PubMed]
    [Google Scholar]
  73. Cole BJ, Feltcher ME, Waters RJ, Wetmore KM, Mucyn TS et al. Genome-wide identification of bacterial plant colonization genes. PLoS Biol 2017; 15:e2002860 [View Article] [PubMed]
    [Google Scholar]
  74. Martínez-Granero F, Rivilla R, Martín M. Rhizosphere selection of highly motile phenotypic variants of Pseudomonas fluorescens with enhanced competitive colonization ability. Appl Environ Microbiol 2006; 72:3429–3434 [View Article] [PubMed]
    [Google Scholar]
  75. Muriel C, Jalvo B, Redondo-Nieto M, Rivilla R, Martín M. Chemotactic Motility of Pseudomonas fluorescens F113 under aerobic and denitrification conditions. PLoS One 2015; 10:e0132242 [View Article] [PubMed]
    [Google Scholar]
  76. Martínez-García E, Nikel PI, Chavarría M, de Lorenzo V. The metabolic cost of flagellar motion in Pseudomonas putida KT2440. Environ Microbiol 2014; 16:291–303 [View Article] [PubMed]
    [Google Scholar]
  77. Barahona E, Navazo A, Garrido-Sanz D, Muriel C, Martínez-Granero F et al. Pseudomonas fluorescens F113 can produce a second flagellar apparatus, which is important for plant root colonization. Front Microbiol 2016; 7:1471 [View Article] [PubMed]
    [Google Scholar]
  78. Lucke M, Correa MG, Levy A. The role of secretion systems, effectors, and secondary metabolites of beneficial rhizobacteria in interactions with plants and microbes. Front Plant Sci 2020; 11:589416 [View Article] [PubMed]
    [Google Scholar]
  79. Silverman JM, Brunet YR, Cascales E, Mougous JD. Structure and regulation of the type VI secretion system. Annu Rev Microbiol 2012; 66:453–472 [View Article] [PubMed]
    [Google Scholar]
  80. Allsopp LP, Wood TE, Howard SA, Maggiorelli F, Nolan LM et al. RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2017; 114:7707–7712 [View Article] [PubMed]
    [Google Scholar]
  81. Redondo-Nieto M, Barret M, Morrissey J, Germaine K, Martínez-Granero F et al. Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics 2013; 14:54 [View Article] [PubMed]
    [Google Scholar]
  82. Taylor TB, Mulley G, Dills AH, Alsohim AS, McGuffin LJ et al. Evolution. Evolutionary resurrection of flagellar motility via rewiring of the nitrogen regulation system. Science 2015; 347:1014–1017 [View Article] [PubMed]
    [Google Scholar]
  83. Sánchez-Contreras M, Martín M, Villacieros M, O’Gara F, Bonilla I et al. Phenotypic selection and phase variation occur during alfalfa root colonization by Pseudomonas fluorescens F113. J Bacteriol 2002; 184:1587–1596 [View Article] [PubMed]
    [Google Scholar]
  84. Köhler T, Harayama S, Ramos JL, Timmis KN. Involvement of Pseudomonas putida RpoN sigma factor in regulation of various metabolic functions. J Bacteriol 1989; 171:4326–4333 [View Article] [PubMed]
    [Google Scholar]
  85. Hengge R. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 2009; 7:263–273 [View Article] [PubMed]
    [Google Scholar]
  86. Little RH, Woodcock SD, Campilongo R, Fung RKY, Heal R et al. Differential regulation of genes for cyclic-di-GMP metabolism orchestrates adaptive changes during rhizosphere colonization by Pseudomonas fluorescens. Front Microbiol 2019; 10:1089 [View Article] [PubMed]
    [Google Scholar]
  87. Moe LA. Amino acids in the rhizosphere: from plants to microbes. Am J Bot 2013; 100:1692–1705 [View Article] [PubMed]
    [Google Scholar]
  88. Nelson CE, Huang W, Brewer LK, Nguyen AT, Kane MA et al. Proteomic analysis of the Pseudomonas aeruginosa iron starvation response reveals PrrF small regulatory RNA-dependent iron regulation of twitching motility, amino acid metabolism, and zinc homeostasis proteins. J Bacteriol 2019; 201:12 [View Article] [PubMed]
    [Google Scholar]
  89. Hinsa SM, Espinosa-Urgel M, Ramos JL, O’Toole GA. Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol 2003; 49:905–918 [View Article] [PubMed]
    [Google Scholar]
  90. Casabona MG, Silverman JM, Sall KM, Boyer F, Couté Y et al. An ABC transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in Pseudomonas aeruginosa. Environ Microbiol 2013; 15:471–486 [View Article] [PubMed]
    [Google Scholar]
  91. Tang R, Zhao L, Xu X, Huang L, Qin Y et al. Dual RNA-Seq uncovers the function of an ABC transporter gene in the host-pathogen interaction between Epinephelus coioides and Pseudomonas plecoglossicida. Fish Shellfish Immunol 2019; 92:45–53 [View Article] [PubMed]
    [Google Scholar]
  92. Barret M, Morrissey JP, O’Gara F. Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils 2011; 47:729–743 [View Article]
    [Google Scholar]
  93. Yan Y, Kuramae EE, de Hollander M, Klinkhamer PGL, van Veen JA. Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME J 2017; 11:56–66 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.000750
Loading
/content/journal/mgen/10.1099/mgen.0.000750
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error